Les principaux domaines de recherches du groupe sont:
La plupart des membres du groupe sont également membres du Laboratoire de physique mathématique du CRM.
Le programme accueille des étudiants ayant de bonnes connaissances en physique et en mathématiques. Un diplôme de second cycle dans l'une de ces disciplines ainsi qu'une solide formation dans l'autre sont essentiels. L'étudiant intéressé intégrer ce programme doit être familier avec les sujets suivants:
Physique: mécanique classique; mécanique statistique; électrodynamique classique; mécanique quantique; relativité.
Mathématiques: analyse réelle, analyse fonctionnelle; analyse complexe; équations différentielles; théorie des groupes et algèbre; théorie de la mesure.
Outre les cours explicitement offerts cette année, le cadre général des cours ci-dessus est recommandé aux étudiants faisant leurs études dans ce programme. Les besoins et la préparation précédente de chaque étudiant(e) détermineront quels des cours devront être suivis. Le choix et l'horaire seront décidés en consultation avec le directeur de recherche. Quoique les cours listés pourront être disponibles en un ou plusieurs départements participants, les titres et numéros de sigles sont donnés afin de faciliter les correspondances. Dans la liste de cours qui suit, un astérisque (*) signifie un cours (niveau maîtrise) qui est obligatoire pour tous les étudiants dans le programme, et (*m) signifie un cours qui est obligatoire pour les étudiants qui n'ont pas suivi un cours équivalent au niveau du baccalauréat. La notation suivante est utilisée pour indiquer le niveau et la fréquence des cours offerts:
(*) 1. Méthodes mathématiques en physique. (A, b)
(*m) 2. Mécanique quantique mathématique (A, b)
(*m) 3. Mécanique analytique (B,b)
4. Théorie quantique des champs (A, i)
5. Mécanique statistique (A, i)
6. Rélativité générale (B, b)
7. Sujets spéciaux en physique mathématique (C, s)
8. Algèbres de groupes de Lie (A, b)
9. Variétés différentiables (A, b)
10. Analyse fonctionnelle (A, b)
11. Equations différentielles (A, i)
L'objectif du concours est de présenter les notions principales de résolution des équations aux dérivées partielles (EDP). Dans ce cours, nous présentons les sujets suivants :
EDP non linéaires du premier ordre. Solutions à l'aide de la méthode de Monge (description analytique du cône de Monge et le ruban caractéristique). Intégration complète et le crochet de Jacobi (méthode de Charpit et méthode de Jacobi), Méthode de Lagrange pour les équations de Hamilton-Jacobi.
EDP du deuxième ordre hyperbolique, elliptique et parabolique. Classification des EDP du second ordre par la méthode de Beltrami, Théorème d'existence des solutions et théorème de Cauchi-Kowaleska, Intégrale intermédiaire pour les équations linéaires de type hyperbolique, Résolution par la méthode de cascade de Laplace, Méthode d'intégration de Riemann, Problème de Sturm-Liouville et polynômes orthogonaux, Méthode de la moyenne sphérique, Méthode d'Hadamard et le principe de Duhamel, Fonction de Green et solution fondamentale.
Système quasilinéaire du premier ordre. Solution de rang 1 (ondes de Riemann), Superposition des ondes de Riemann (Solution de rang k>1), Systèmes en involution, Estimé du degré de liberté d'une solution au sens de Cartan.