Mathematical Physics

Program Description

The main areas of research of the group are:

  • classical and quantum integrable systems;
  • completely solvable statistical methods;
  • direct and inverse spectral transform methods;
  • applications to coherent nonlinear systems in fluids, solids, optics and plasmas;
  • spectral theory of random matrices and random operators;
  • integrable random processes, random partitions, random growth;
  • Laplacian growth and log Coulomb gases;
  • asymptotic methods in spectral analysis;
  • foundational problems in classical and quantum statistical mechanics;
  • solutions of classical nonlinear field equations (gauge theory, gravity);
  • symmetry analysis of P.D.E.'s;
  • quasi-crystals;
  • conformal field theory;
  • representation theory of Lie groups and quantum groups;
  • percolation phenomena;
  • foundational problems in quantization (stochastic and geometric quantization; coherent states);
  • mathematical structure of classical and quantum field theories (gauge theory; quantum gravity).

Most members of the program are also members of the CRM Mathematical Physics Laboratory.

Program Members

Academic Program

It is expected that students entering the program have an adequate preparation in both physics and mathematics. The normal requirement is either a master's degree or the equivalent of a Canadian honours degree in one of the two disciplines, with strong preparation in the other. The following is a list of subjects with which the incoming student is assumed to have familiarity at this level.

  • Physics: classical mechanics; statistical mechanics; classical electrodynamics; quantum mechanics; relativity.
  • Mathematics: Real analysis, functional analysis; complex variables; differential equations; introductory group theory and algebra; measure theory.

Besides the specific courses offered this year, the following general framework of courses is recommended to students doing their degrees within this program. The needs and background of each individual student will determine which of these courses is required; the choice and timing should be determined in consultation with the student's thesis advisor. In any particular year, these courses might be offered at only one of the participating universities, but the titles and course numbers are listed in order to facilitate cross registration. In the following, an asterisk (*) signifies a (Master's level) course that is obligatory for all students in the programme, and (*m) signifies a course that is obligatory for students who have not already completed the equivalent at a level equivalent to an honours level undergraduate degree. The following notation is used to distinguish the level and frequency of courses offered:

  • A= course offered at least annually at one of the participating universities.
  • B= course offered every second year at one of the participating universities.
  • C= course offered according to demand at one of the participating universities.
  • b= basic level (Master's level)
  • i= intermediate level (Master's or doctoral)
  • s= specialized course (Master's or doctoral)

(*) 1. Mathematical methods in physics (A, b)

  • McGill: Phys. 198-612 - Advanced Mathematical Physics I
  • McGill: Phys. 198-613 - Advanced Mathematical Physics II
  • McGill: Math 189-585 - Integral Equations and Transforms
  • McGill: Math 189-586 - Applied Partial Differential Equations
  • Univ. de Montréal: Mat 6435 - Equations de la physique

(*m) 2. Mathematical quantum mechanics (A, b)

  • Concordia: Math 684 /854 - Quantum mechanics / Quantization techniques

(*m) 3. Analytical mechanics (B, b)

  • McGill: Math 189-561 - Analytic Mechanics

4. Quantum field theory (A,i)

  • McGill: Phys. 198-673 Theoretical High Energy Physics
  • Univ. de Montréal: Phys. 6812 - Théorie des champs I
  • Univ. de Montréal: Phys. 6822 - Théorie des champs II

5. Statistical mechanics (A, i)

  • Concordia: Phys 661 - Nonequilibrium statistical mechanics
  • McGill: Phys 198-559 - Statistical mechanics

6. General Relativity (B, b)

7. Selected Topics in Mathematical Physics (C, s)

  • Concordia MAST 856A- Selected Topics in Mathematical Physics

8. Lie algebras and groups (A, b)

  • Concordia: Math 694 - Lie groups
  • Univ. de Montréal: Math 6681Q - Algèbre: sujets spéciaux
  • Univ. de Montréal MAT 6633 - Théorie des groupes de Lie
  • UQAM: Mat 7410 - Groupes et algèbres de Lie

9. Differentiable manifolds (A, b)

  • Concordia: Math 656 - Differential geometry
  • McGill: Math 189-576 - Geometry and topology I
  • McGill: Math 189-577 - Geometry and topology II
  • Univ. de Montréal: Math 6323 - Variétés différentiables
  • UQAM: Mat 8131 - Géométrie différentielle

10. Functional analysis (A, b)

  • Concordia: Math 662 - Functional analysis I
  • McGill: Math 189-635 - Functional analysis
  • Univ. de Montréal: Math 6112- Analyse fonctionelle I

11. Differential equations (A, i)

  • Concordia: Math 666 - Differential equations
  • McGill: Math 189-575 - Partial differential equations
  • Univ. de Montréal: Math 6180 - Equations différentielles

2023-24 Course Listings


A Survey of Modern Geometric Structures and Challenges (non-credited course)

Target Audience: Second-degree mathematics/physics undergraduates - PhD students

This course introduces several of the principal geometric structures relevant to the description of classical mechanics and classical field theories. Basic knowledge of differential geometry is assumed, including vector and principal bundles, Poincaré's lemma, and calculus on manifolds. Half of the course delves into standard topics in symplectic, Poisson, and Dirac geometry, while the latter segments focus on structures pertinent to contemporary research problems. These include contact and multisymplectic geometry, along with their Marsden-Weinstein reductions. Notably, contact geometry has experienced a revival in recent years, with significant attention directed toward its application in the study of Hamiltonian systems. Additionally, its analogue for field theories, k-contact geometry, has also attracted interest. I will review modern attempts at devising a multisymplectic reduction, which has remained unsolved for approximately three decades. More information on the subject can be found at

Room 5448, Pavillon André-Aisenstadt
Université de Montréal
Fridays, 10:30-12:30
September 8 - December 15

Prof. Javier de Lucas Araujo (Simons-CRM Professor)

Non-credited course

Institution: Université de Montréal


Équations aux dérivées partielles (UQTR)

L'objectif du concours est de présenter les notions principales de résolution des équations aux dérivées partielles (EDP). Dans ce cours, nous présentons les sujets suivants :

EDP non linéaires du premier ordre. Solutions à l'aide de la méthode de Monge (description analytique du cône de Monge et le ruban caractéristique). Intégration complète et le crochet de Jacobi (méthode de Charpit et méthode de Jacobi), Méthode de Lagrange pour les équations de Hamilton-Jacobi.

EDP du deuxième ordre hyperbolique, elliptique et parabolique. Classification des EDP du second ordre par la méthode de Beltrami, Théorème d'existence des solutions et théorème de Cauchi-Kowaleska, Intégrale intermédiaire pour les équations linéaires de type hyperbolique, Résolution par la méthode de cascade de Laplace, Méthode d'intégration de Riemann, Problème de Sturm-Liouville et polynômes orthogonaux, Méthode de la moyenne sphérique, Méthode d'Hadamard et le principe de Duhamel, Fonction de Green et solution fondamentale.

Système quasilinéaire du premier ordre. Solution de rang 1 (ondes de Riemann), Superposition des ondes de Riemann (Solution de rang k>1), Systèmes en involution, Estimé du degré de liberté d'une solution au sens de Cartan.

Prof. Michel Grundland


Institution: Université du Québec à Trois-Rivières