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1. Introduction

In the paper [GJS], the authors looked at eigenvalue distribution and level
spacings distribution for the N -th irreducible representation of elements of
the group ring of SU(2) as N →∞.

In the current paper, we will study the behaviour of the corresponding
eigenvectors.

2. Questions

Fix k ≥ 3. Let g = g1 + g−11 + . . . + gk + g−1k be a generic element of
R[SU(2)]. Let πN denote the N -th irreducible representation of SU(2). It
has been found in [GJS] that for N odd, the eigenvalues of πN (g) are double
for generic choice of g ∈ SU(2)k, while for N even, the eigenvalues are simple
for such g. We normalize eigenvectors to have l2 norm equal to 1.

For N even, we get (N + 1) points on the unit sphere SN ⊂ RN+1. It is
a natural to ask the following:

Question 1. Do those points become uniformly distributed on SN as N →
∞?

A weaker question is whether this happens after averaging over SU(2)k.
For N odd, the eigenvalues are double. Accordingly, a natural question

seems to be the following:

Question 2. Are the 2-dimensional subspaces corresponding to the double
eigenvalues becoming uniformly distributed in Gr(2, N + 1), as N →∞?

3. Results for random matrices

Our motivation comes from the theory of random matrices, where the
behaviour of eigenvectors was studied by Gaudin, Mehta, Knowles, Yin, Tao
and Vu. We refer to [KnY, TV] and references therein for results about both
Wigner matrices and general random matrices. One of the important results
is that the eigenvectors of random matrices become uniformly distributed
on the unit sphere as the dimension of the matrix is growing.
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4. Increasing the number of generators

In [GJS] the following result was shown ([GJS, Prop. 2.1]):

Proposition 4.1. Let νN,k be the direct image of dg1dg2 . . . dgk on G(k)

under the map

(4.1) (g1, g2, . . . , gk) → (
1√
k

(g1 + g−11 + . . .+ gk + g−1k ))̂(πN )

Thus νN,k is a probability measure on HN+1. As k → ∞, νN,k converges
in measure to the standard GOE measure on HN+1 if N is even and to the
standard GSE measure if N is odd.

HereHN+1 denotes the real linear space of (N+1)×(N+1) real symmetric
matrices.

Convergence of matrices implies convergence of their eigenvectors. Com-
bining with results from [TV], we obtain the following results:

Theorem 4.2. Fix N and let k →∞. Then the conclusions of [TV, Thm.
3 i)] and [TV, Corollary 4] holds for eigenvectors of (g1 + g−11 + . . . + gk +

g−1k ))̂(πN ).

In other words, this implies that as k →∞, after a respective normaliza-
tion of the eigenvectors (discussed in [TV]), the coefficients of the eigenvec-

tors (for M = o(
√
N) being a coefficient of the eigenvectors) of πN (g) (after

scaling them by
√
N), will differ from an independent random variable by

o(1) in the variation norm. This result is further studied in the numerical
results shown later in the paper. A weaker result holds if M = o(N/ logN).

5. Numerical implementation

In this section, we fix the number k of generators of a subgroup of SU(2),
and study numerically the distribution of the eigenvectors of 4.1.

The Lie algebra

su(2) =

{[
ia z
−z −ia

]
: a ∈ R, z ∈ C

}
is spanned by

X1 =

[
i 0
0 −i

]
, X2 =

[
0 1
−1 1

]
, X3 =

[
0 i
i 0

]
.

Together with the exponential map and the differential of πN , for X ∈ su(2),
the relation

πN (expX) = exp(dπN (X)),

is used to compute πN of some element of SU(2). First, we compute ex-
plicitely dπN of X1, X2 and X3 with the relation dπN (X) = d

dt exp(tX)
∣∣
t=0

.
This allows us to find dπN of any element of su(2). Then, the matrix ex-
ponential of Mathematica or Matlab is used to the matrix in WN+1. The
remaining of the section are the computations of dπN for X1, X2, X3.
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Starting with X1, we have exp tX1 =
[
eti

0
0

e−ti

]
. Since the action of

exp tX1 sends (x y) to (eitx e−ity), with ej = xjyN−j being the basis
of WN+1, one gets, for 0 < j < N ,

d

dt
exp tX1(ej)

∣∣∣∣
t=0

=
d

dt
(eitx)j(e−ity)N−j

∣∣∣∣
t=0

=
d

dt
e2itj−itNxjyN−j

∣∣∣∣
t=0

= (2ij − iN)ej

and −iNej for j = 0, iNej for j = N .
Now, we have the computation of exp(tX2). We notice that (I2 is the

2× 2 identity matrix):

X2
2 =

[
0 1
−1 0

]
= −I2 X3

2 =

[
0 −1
1 0

]
= −X2

X4
2 =

[
1 0
0 1

]
= I2 X5

2 =

[
0 1
−1 0

]
= X2

This enables us to find:

exp(tX2) = I2 + tX2 − t2
I2
2!
− t3X2

3!
+ t4

I2
4!

+ t5
X5

5!
+ . . .

exp(tX2) =

[
cos(t) 0

0 cos(t)

]
+

[
0 sin(t)

− sin(t) 0

]
=

[
cos(t) sin(t)
− sin(t) cos(t)

]
This is found by collecting terms and recognizing the infinite sums give the
power series representation of sin(t) and cos(t).

Now, we have the following basis of Wn+1 (for j = 0 . . . , N):

êj =
xjyN−j√
j!(N − j)!

We will now compute dπN (X2)(êj). We claim that:

dπN (X2)(êj) = −
√
j(N − j + 1)êj−1 +

√
(N − j)(j + 1)êj+1

Firstly, we have that the elements of the basis êj are mapped to:

êj =
xjyN−j√
j!(N − j)!

→ (x cos(t)− y sin(t))j(x sin(t) + y cos(t))N−j√
j!(N − j)!

Now, it follows:
(5.1)

dπN (X2)(êj) =
d

dt

(
(x cos(t)− y sin(t))j(x sin(t) + y cos(t))N−j√

j!(N − j)!

)
|t=0
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Assume now that j 6= 0 or j 6= N . Then, differentiating the above expression
gives:

dπN (X2)(êj) =
1√

j!(N − j)!
(
(−j(x cos(t)− y sin(t))j−1(x sin(t) + y cos(t))N−j+1

+ (N − j)(x sin(t) + y cos(t))N−j−1(x cos(t)− y sin(t))j+1
)
|t=0

Evaluating the following expression, this reduces to:

dπN (X2)(êj) =
−j√

j!(N − j)!
xj−1yN−(j−1) +

N − j√
j!(N − j)!

yN−(j+1)xj+1

By rearranging the terms, the result follows for j 6= 0 or j 6= N :

dπN (X2)(êj) = −
√
j(N − j + 1)êj−1 +

√
(N − j)(j + 1)êj+1

For j = 0, N , the computations are very similar, and we find
√
Nê1 and

−
√
NêN−1 respectively.

To now compute dπN (X2), simply notice that the action of dπN (X2) on
the basis vectors êj will give us the columns in dπN (X2). Hence, it follows:

dπN (X2)(êj) =


√
Nê1 if j = 0

−
√
j(N − j + 1)êj−1 +

√
(N − j)(j + 1)êj+1 if j 6= 0, j 6= N

−
√
NêN−1 if j = N

For X3, we note that
[
0
1

1
0

]2
=
[
1
0

0
1

]
= I2. Next, we have

exp tX3 =
∞∑
n=0

tnX3
n

n!

=

∞∑
n=0

tnin

n!

[
0 1
1 0

]n
= I

∞∑
n=0

(−1)2nt2n

(2n)!
+ i

[
0 1
1 0

] ∞∑
n=0

(−1)2n+1t2n+1

(2n+ 1)!

=

[
cos t i sin t
i sin t cos t

]
.
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We know the acion of exp tX3 (x y) 7→ (x cos t+ iy sin t ix sin t+y cos t).
For ej with 1 < j < N , the computation becomes

d

dt
(exptX3)(ej)

∣∣∣∣
t=0

=
d

dt
(x cos t+ iy sin t)j(ix sin t+ y cos t)N−j

∣∣∣∣
t=0

= j(x cos t+ iy sin t)j−1(−x sin t+ iy cos t)(ix sin t+ y cos t)N−j

+ (x cos t+ iy sin t)j(N − j)(ix sin t+ y cos t)N−j−1(ix cos t− y cos t)
∣∣∣
t=0

since−x sin t+iy cos t = i(ix sin t+ y cos t) and i cos t−y sin t = i(x cos t+ iy sin t),

= ij(x cos t+ iy sin t)j−1(ix sin t+ y cos t)N−j+1

+ i(N − j)(x cos t+ iy sin t)j+1(ix sin t+ y cos t)N−j−1
∣∣∣
t=0

= ijxj−1yN−j+1 + i(N − j)xj+1yN−j−1.

In the normalized base, we get

d

dt
(exp tX3)(êj)

∣∣∣∣
t=0

=
1√

j! (N − j)!
d

dt
(exp tX3)(ej)

∣∣∣∣
t=0

=
1√

j! (N − j)!
ijxj−1yN−j+1 +

1√
j! (N − j)!

i(N − j)xj+1yN−j−1

=

√
(j − 1)! (N − j + 1)!√

j! (N − j)!
ijxj−1yN−j+1√

(j − 1)! (N − j + 1)!

+

√
(j + 1)! (N − j − 1)!√

j! (N − j)!
i(N − j)xj+1yN−j−1√

(j + 1)! (N − j − 1)!

=

√
(N − j + 1)

j
ijêj−1 +

√
j + 1

(N − j)
i(N − j)êj−1

= i
√
j(N − j + 1)êj−1 + i

√
(j + 1)(N − j)êj+1.

Lastly, for j = 0 and j = N , one can find dπN (X3)(ê0) = i
√
Nê1 and

dπN (X3)(êN ) = i
√
NêN−1, respectively.

We conclude that

dπN (X3)(êj) =


i
√
Nê1, if j = 0;

i
√
j(N − j + 1)êj−1 + i

√
(j + 1)(N − j)êj+1, if 0 < j < N ;

i
√
NêN−1, if j = N .
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6. Testing uniform distribution: even N

There are several ways of testing whether a sequence of points becomes
uniformly distributed on SN .

One can compute the lk, k ≥ 2 norms of eigenvectors, as well as their l1

norm, and study its behaviour.
One can project eigenvectors onto an m-dimensional subspace of RN+1,

and compare the distribution of the projections to the m-dimensional Gauss-
ian.

Now, for N even, the eigenvalues will be simple. Since πN (g) is self-
adjoint and as the eigenvalues are simple, it follows that the eigenvectors
will be real. Hence, we will plot the increasing lp norm of the eigenvectors
of πN (g) for even p against the eigenvalue number (in absolute value), and
the same procedure will be done for the l∞ norm.

Figure 1. l6 norm of the eigenvectors of πN (g) for N = 500
against eigenvalue number (in absolute value)

Figure 2. l8 norm of the eigenvectors of πN (g) for N = 500
against eigenvalue number (in absolute value)
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Figure 3. l∞ norm of the eigenvectors of πN (g) for N = 500
against eigenvalue number (in absolute value)

The above graphs are to be expected, since lp is a decreasing function to
l∞ as p→∞.

Figure 4. l6 norm of the eigenvectors of πN (g) forN = 1000
against eigenvalue number (in absolute value)
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Figure 5. l8 norm of the eigenvectors of πN (g) forN = 1000
against eigenvalue number (in absolute value)

Figure 6. l∞ norm of the eigenvectors of πN (g) for N =
1000 against eigenvalue number (in absolute value)

Figure 7. l6 norm of the eigenvectors of πN (g) forN = 1500
against eigenvalue number (in absolute value)
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Figure 8. l8 norm of the eigenvectors of πN (g) forN = 1500
against eigenvalue number (in absolute value)

Figure 9. l∞ norm of the eigenvectors of πN (g) for N =
1500 against eigenvalue number (in absolute value)

Now, we will make a histogram of the components of the eigenvectors of
πN (g) (which are complex) and compare it against a histogram of a random
variable distributed according to a bivariate normal distribution. The his-
togram of the eigenvectors will be made by taking all the eigenvectors and
all of their components (making a 2-dimensional histogram of the real and
imaginary parts of the components of the eigenvectors). For the other his-
togram, we will take (N + 1)2 samples from a bivariate normal distribution.

Numerically, it was found that the components of the eigenvectors consid-
ered as a bivariate normal random variable (as a bivariate (X,Y ) random
variable, where X is the real part of the components of the eigenvectors
and Y the imaginary part) have an identity covariance matrix, so the his-
togram of the eigenvectors was compared against a bivariate normal distri-
bution with 0 mean and an identity covariance matrix. To eliminate the bias
present in the eigenvectors of the matrix, if u = (u1, . . . , uN+1) is a complex
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eigenvector, we take arg u1 and multiply the eigenvector by e−i arg(u1). We
will multiply the components by

√
2(N + 1) (in order to obtain a normal

distribution). In both figures the generators were fixed and N increased.

(a) Histogram of the bivariate gaussian

(b) Histogram of the eigenvector components

Figure 10. Histogram of the bivariate gaussian distribution
against the histogram of the eigenvector components of πN (g)
for N = 600
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(a) Histogram of the bivariate gaussian

(b) Histogram of the eigenvector components

Figure 11. Histogram of the bivariate gaussian distribution
against the histogram of the eigenvector components of πN (g)
for N = 1000
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7. Testing uniform distribution: odd N

For odd N , the eigenvalues will be double (πN (g) has even dimension).
In a similar way to the histograms produced for the even case, we do the
same normalization process for the eigenvectors. Now, for each eigenvalue
λi, we will have two associated eigenvectors (which form a basis for the
eigenspace associated to λi) ui and ui+1. Then, consider the random variable
(X,Y, Z,W ), where we have:

X = Re(uij ) Y = Im(uij ) Z = Re(ui+1j ) X = Im(ui+1j )

For uij being the j-th component of ui. Numerically, the random variable
(X,Y, Z,W ) seems to have 0 mean and an identity covariance matrix as N
becomes large. We consider the random variables coming from projections of
(X,Y, Z,W ), (X,Y ), (X,W ), (Z, Y ), (Z,W ) and fixed generators for πN (g).
The histogram for the projected random variables will be compared against

a histogram of (N+1)2

4 samples from a bivariate standard normal distribu-
tion (the projection random variables had as well 0 mean and an identity
covariance matrix).

(a) Histogram of the bivariate
gaussian for 601

(b) Histogram of the bivariate
gaussian for N = 1001

Figure 12. Histogram of the bivariate standard gaussian
distribution for samples corresponding to N = 601 and N =
1001
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(a) Histogram of (X,Y ) (b) Histogram of (X,W )

(c) Histogram of (Z, Y ) (d) Histogram of (Z,W )

Figure 13. Histograms of projections of (X,Y, Z,W ) for N = 601

(a) Histogram of (X,Y ) (b) Histogram of (X,W )

(c) Histogram of (Z, Y ) (d) Histogram of (Z,W )

Figure 14. Histograms of projections of (X,Y, Z,W ) for N = 1001
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8. Ramanujan Bounds

Another interesting point is to analyze the limiting behavior of the eigen-
vectors of πN (g) for different number of generators (which are randomly
chosen). It is expected that the largest eigenvalues (in absolute value) of
πN (g) for any number k of generators tend to ±2

√
2k − 1 as n → ∞, also

known as the Ramanujan bound. This assertion has an equivalent for ran-
dom graphs, also known as Alon’s conjucture, proven recently.

The statement will be verified numerically for N in a range between 699
and 799, for a varying number of generators (specifically, for 2, 3, 4 and 5
generators). The largest eigenvalue number will be compared against N ,
where the straight lines in the graphs represent the Ramanujan bound.

(a) Largest eigenvalues for k = 2 (b) Largest eigenvalues for k = 3

(c) Largest eigenvalues for k = 4 (d) Largest eiegenvalues for k = 5

Figure 15. Largest eigenvalue number of πN (g) for k = 2, 3, 4, 5
generators chosen at random

9. Representation varieties

Moving in the space of representations. LATER ON.
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10. The Spectral Function

It is also interesting to look at the behaviour of the spectral function

(10.1) F (i, j, µ) =
∑
λm≤µ

um(i)um(j),

where λm, 1 ≤ m ≤ N+1, are the eigenvalues of πN (g) and um(i),um(j) are
the i-th and j-th component, respectively, of the corresponding eigenvector.
Note that the spectral function defined in (10.1) is “self-normalizing” (as a
kernel for a spectral projection operator), in the sense of Definition (i) from
[TV].

6 4 2 0 2 4 6

0.2

0.4

0.6

0.8

1.0

(a)

6 4 2 0 2 4 6

0.10

0.05

0.00

0.05

0.10

Real Imaginary Modulus

(b)

6 4 2 0 2 4 6

0.010

0.005

0.000

0.005

0.010

Real Imaginary Modulus

(c)

6 4 2 0 2 4 6

0.005

0.000

0.005

0.010

Real Imaginary Modulus

(d)

Figure 17. Shown above are plots of the spectral function,
F (i, j, µ) of πN (g), N = 2000, g ∈ R[SU(2)] fixed, for various
i and j: (a) F (18, 18, µ) (b) F (0, 1, µ) (c) F (13, 23, µ)(d)
F (13, 113, µ)

Thing to do: look at matrix entries of πN (g), and see if one can notice
anything interesting.
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One way to gain qualitative information about πN (g) is to make a color map
of the matrix. Considering a real matrix AN (g), whose entries are related
to the entries of πN (g) by some scalar function (modulus, real part etc.), we
can color an N ×N grid according to the entries of AN (g) and some color
scale.

B =


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5



Figure 18. Example of a color map of the matrix B shown
above.

We can apply this to a matrix AN (g), where we take the entries of AN (g)
to be the modulus of the entries of πN (g). Doing this gives some interesting
results.
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Figure 19. Color maps of the matrix AN (g) for various
g ∈ R[SU(2)] and N ∈ N.
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While different g ∈ R[SU(2)] produce different maps, they all seem to
share the similarity of having a family of ellipses inscribed within the matrix
grid.
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