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Abstract

One aspect of Chebyshev’s bias is the phenomenon that a prime number, q, modulo another prime
number, p, experimentally seems to be slightly more likely to be a nonquadratic residue than a quadratic
residue. We thought it would be interesting to model this residue bias as a “random” walk using Legendre
symbol values as steps. Such a model would allow us to easily visualize the bias. In addition, we would
be able to extend our model to other number fields.

In this report, we first outline underlying theory and some motivations for our research. In the second
section, we present our findings in the rational prime numbers. We found evidence that Chebyshev’s
bias, if modeled as a Legendre symbol ( q

p
) walk, may be somewhat reduced by only allowing q to iterate

over primes with nonquadratic residue (mod 4). In the final section, we extend our Legendre symbol
walks to the Gaussian primes and present our main findings. Let π1 = α + βi and π2 = β + αi. We

observed strong (±) correlations between Gaussian Legendre symbol walks for
[
a+bi
π1

]
and

[
a+bi
π2

]
where

N(π1) = N(π2) and a+bi iterates over Gaussian primes in the first quadrant. We attempt an explanation
of why, for some norms, the plots for π1 and π2 have strong positive correlation, while, for other norms,
the plots have strong negative correlation. We hope to have written in a way that makes our observations
accessible to readers without prior formal training in number theory.

1 Introduction

1.1 Prime Numbers

Definition 1. A prime number p is any integer p > 1 whose divisors are only 1 and itself. A composite
number is any integer that is not a prime number or the unit number, 1.

One of the first mathematicians to study the primes was Eratosthenes, to whom is attributed an algorithm
to find all primes less than or equal to a certain value. The Sieve of Eratosthenes starts by marking all
multiples of 2 as composite, then proceeding to multiples of 3, 5, 7 and so on up to x.

For example, after all even numbers up to (and including) 30 have been marked as composite, we have:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Next, we mark composite all multiples of 3 not already marked:

2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Next, we continue to multiples of 5 and proceed as before, continuing until multiples of 29:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,29, 30

The remaining values form the set {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}, which are the prime numbers less than or
equal to 30; i.e. the set of numbers less than or equal to 30 whose divisors are only 1 and itself.
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Proposition 1. (Fundamental Theorem of Arithmetic) Every integer has a unique prime factorization.

In other words, every integer can we expressed in a unique way as an infinite product of powers of primes:

n = 2α13α25α37α4 · · · =
∏

pαii (1)

where p ∈ primes, and a finite number of αi are positive integers with the rest being zero. For example, we
can write 10 = 21 · 30 · 51 · 70 · 110 · · · .
Proposition 2. (Euclid’s Theorem) There are infinitely many prime numbers.

There are many well-known proofs of Euclid’s theorem. Euler’s proof is as follows:
Let p denote prime numbers and P denote the set of all prime numbers. Then,∏

p∈P

∑
α≥0

1

pα
=
∑
α≥0

1

2α
·
∑
α≥0

1

3α
·
∑
α≥0

1

5α
·
∑
α≥0

1

7α
· · · =

∑
α1,α2,α3,...≥0

1

2α13α25α3 · · ·

However, by (1), we know that every integer can be written uniquely as a product of primes. Thus, we can
rewrite our equation as: ∏

p∈P

∑
α≥0

1

pα
=

∑
α1,α2,α3,...≥0

1

2α13α25α3 · · ·
=
∑
n

1

n
(2)

We then recognize the right hand side of (2) as the harmonic series. Because of the divergence of the
harmonic series, we know our product must be infinite as well. Since each term of our product is a finite
number, there must be an infinite number of terms for the product to be infinite.

Euler also proved a stronger version of the divergence of the harmonic series, in which he shows the sum of
reciprocals of primes also diverges [1]. We will use this fact in a later proof.∑

p∈P

1

p
=∞ (3)

1.2 Arithmetic Progressions

The Sieve of Eratosthenes is effective because of the simplicity of identifying multiples of a number. For
example, it is easy to identify all numbers of the form 3n (which is the set {3, 6, 9, 12, 15, 18, . . .} for n ≥ 1) as
multiples of 3, and subsequently mark them as composite (with the exception of the first element). However,
what happens if we change the starting value of the set, while keeping the distance between elements the
same?
Definition 2. We call a sequence of numbers with constant difference between terms an arithmetic progres-
sion.

For example, consider all numbers of the form 3n+2 and 3n+1, which represent the sets {2, 5, 8, 11, 14, 17 . . .}
and {1, 4, 7, 10, 13, 16, . . .} respectively. Both sets of numbers are arithmetic progressions with a difference
of 3.

The reader might then inquire:

• Between 3n + 2 and 3n + 1, which arithmetic progression contains more primes up to a value x? In
other words, if we consider the count of primes in each progression as a race, which team is in the lead
at a given x?

• Can we extend Euclid’s Theorem to primes in arithmetic progressions? In other words, do arithmetic
progressions contain infinitely many primes?

• What is the distribution of primes in these progressions?

To answer these questions, we must first introduce a few tools to give our analysis some sophistication.
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1.3 Euclidean Algorithm, Euler’s Totient Function, and Modulo

Definition 3. An integer a 6= 0 divides another integer b if there exists another integer c, such that b = ac.
We denote that a divides b with a|b.
Definition 4. Pick two integers a and b. An integer c such that c|a and c|b is said to be a common divisor
of a and b. If there exists another integer d ≥ c that also divides a and b, we say that d is the greatest
common divisor of a and b. We denote this by gcd(a, b) = d.
Proposition 3. Let a and b be integers. The Euclidean Algorithm allows us to compute the greatest
common divisor of a and b; i.e. it allows us to find the largest number that divides both a and b, leaving no
remainder. The algorithm is as follows:

a = bq0 + r0 for 0 < r0 < b

b = r0q1 + r1 for 0 < r1 < r0

r = r1q2 + r2 for 0 < r2 < r1

. . .

rk−1 = rkqk+1 + rk+1 for 0 < rk+1 < rk

rk = rk+1qk+2 + 0

Then gcd(a, b) = rk+1. For example, to find gcd(6188, 4709), we apply the Euclidean Algorithm as follows:

6188 = 4709 · 1 + 1479

4709 = 1479 · 3 + 272

1479 = 272 · 5 + 119

272 = 119 · 2 + 34

119 = 34 · 3 + 17

34 = 17 · 2
17 = gcd(6188, 4709)

Definition 5. a and b are said to be relatively prime, or coprime if gcd(a, b) = 1.

Two prime numbers, p and q, will always be coprime to each other. A composite number, a, will be coprime
to prime number, p, if and only if a is not a multiple of p.
Definition 6. Euler’s totient function, denoted φ(n), counts the number of totatives of n, i.e. the number
of (positive) integers up to n that are coprime to n.

For example, φ(10) = #{1, 3, 7, 9} = 4. In this example, the numbers 1, 3, 7, and 9, are the totatives of 10.
For a prime number p, φ(p) = #{1, 2, . . . , p− 1} = p− 1 since all integers < p are also coprime to p.
Definition 7. We say that a is congruent to r modulo b if b|a− r. We write this relation as a ≡ r (mod b)

In other words, we say that a ≡ r (mod b) if r is the remainder when a is divided by b. For example, when
9 is divided by 7, the remainder is 2. In other words, 9 ≡ 2 (mod 7). This concept allows us to conveniently
refer to arithmetic progressions by their congruences modulo a. For instance, we can refer to the progression
4n + 3 as the set of all integers congruent to 3 (mod 4). Furthermore, we can refer to all primes in the
progression 4n+ 3 as the set of primes congruent to 3 (mod 4).
Corollary. Let Z denote the set of all integers. The modulo operation allows us to define a quotient ring,
Z/nZ, which is the ring of integers modulo n.

For example, the set of all integers modulo 6 repeats as {. . . , 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, . . .}. The unique
elements of this set are {0, 1, 2, 3, 4, 5}, which is the ring Z/6Z. We say that an element u in Z/nZ is a unit
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in the ring if there exists a multiplicative element v, such that uv = vu = 1. We denote the group of units
as (Z/nZ)×.

The group (Z/nZ)× has φ(n) elements, which are the totatives of n. For example, for the ring Z/6Z, the
group of units, (Z/6Z)× is given by the totatives of 6: {1,5}. We notice that 1 and 5 are both units in Z/6Z
since 1 ≡ 1 (mod 6) and 5 · 5 ≡ 1 (mod 6). Thus for a prime number p, the group (Z/pZ)× has p− 1 = φ(p)
elements.

1.4 The Prime Number Theorem and Dirichlet’s Theorem on Arithmetic Pro-
gressions

Let π(x) denote the number of primes up to x.

Proposition 4. Gauss’s Prime Number Theorem (PNT), which Hadamard and Vallèe-Poussin proved in-
dependently in 1896, states that π(x) behaves asymptotically to x/ log(x)1

Put another way:

lim
x→∞

π(x)

x/ log(x)
= 1 (4)

Thus for an arbitrarily large value of x, one can expect π(x) to be close to x/ log(x), with some error term.
One might next wonder about approximating the count of primes within an arithmetic progression. One way
of intuitively approaching this problem is by viewing the set of all positive integers as a union of arithmetic
progressions. For example, if we consider the arithmetic progressions with a difference of 3 between elements
in each set, we have the three progressions:

{3n+ 1 for n ∈ N0} = {1, 4, 7, 10, 13, 16, . . .}
{3n+ 2 for n ∈ N0} = {2, 5, 8, 11, 14, 17, . . .}
{3n for n ∈ N1} = {3, 6, 9, 12, 15, 18, . . .}

Combining these three sets will yield the set of all positive integers. Since each element in the third set is
a multiple of 3, and thus a composite number, we can ignore this set and only consider the first two. We
can then expect the primes to be split approximately equally between 3n + 1 and 3n + 2. Similarly, for a
difference of 4 between elements in each set, primes would be split approximately evenly between 4n+ 1 and
4n+ 3.

Thus applying our intuition to (4), we arrive at:
Theorem 1. (Dirichlet’s Theorem on Arithmetic Progressions) If gcd(a, b) = 1, there are infinitely many
primes congruent to b modulo a. In addition, for progressions of the form an + b, the primes will be split
among φ(a) different progressions. In other words, the proportion of primes in a progression with increment
a is 1

φ(a) .

lim
x→∞

π(x; a, b)

x/(φ(a) · log(x))
= 1 (5)

For example, the progression 5n+ 1 holds one-fourth of primes (φ(5) = 4), and we write:

lim
x→∞

π(x; 5, 1)

x/(φ(5) · log(x))
= 1

1 log(x) here is actually the natural log of x, but we wish to use the same notation as in our references
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The complete proof of Dirichlet’s Theorem is quite lengthy, but excellently shown by Pete L. Clark [2]
and Austin Tran [3]. Here, we only briefly introduce important concepts from analytic number theory and
highlight crucial points of the proof as shown by Clark and Tran. For readers not familiar with analytic
number theory, this section may be particularly difficult. Nevertheless, we encourage the reader on.
Definition 8. A Dirichlet Character modulo a is a function χ on the units of Z/aZ that has the following
properties:

• χ is periodic modulo a, i.e. χ(b) = χ(b+ a) for b ∈ N.

• χ is multiplicative, i.e. χ(b) · χ(c) = χ(bc).

• χ(1) = 1.

• χ(b) 6= 0 if and only if gcd(a, b) = 1.

We say that a character is principal if its value is 1 for all arguments coprime to its modulus, and 0 otherwise.
We denote the principal character modulo a as χ0. Note that the principal character still depends on a.
Example. Consider the Dirichlet characters modulo 3. We have χ(1) = 1 and χ(3) = 0 by properties stated
above. Using the multiplicativity and periodicity of χ we note that (χ(2))2 = χ(2) · χ(2) = χ(1) = 1. This
implies that

√
(χ(2))2 = χ(2) = ±1. If χ(2) = 1, then χ = χ0 is a principal character by definition. On

the other hand, we use χ1 to denote the character for when χ(2) = −1. We note that χ1 also satisfies all
necessary properties to be a Dirichlet character, but is not a principal character.
Proposition 5. Let X(a) denote the set of all Dirichlet Characters modulo a. X(a) is a group with
multiplication and an identity element given by the principal character χ0 modulo a. In addition, the
following orthogonality relation holds (orthogonality of characters):

∑
χ (mod a)

=

{
1 if b ≡ 1 (mod a),

0 otherwise

(A proof of the orthogonality of characters is nicely shown by A. Tran in [3]).
Corollary. The values of a character χ are either 0 or the φ(a)th roots of unity.

Recall that if χ(b) 6= 0, then gcd(a, b) = 1. If order of the group is φ(a), then χ(b)φ(a) is principal, so

χ(b)φ(a) = 1. Thus, χ(b) = e
2πiν
φ(a) for ν ∈ N.

Definition 9. A Dirichlet L-series is a function of the form:

L(χ, s) =

∞∑
n=1

χ(k)

ns

where s is a complex variable with Re(s)> 1.
Proposition 6. The Dirichlet L-function can be also expressed as an Euler product as follows (A proof can
be found in [4]):

L(χ, s) =
∏
p

(
1− χ(p)

ps

)−1

(6)

We introduce an intermediate theorem necessary for the proof of theorem 1:
Theorem 2. Dirichlet’s Non-vanishing Theorem states that L(χ, 1) 6= 0 if χ is not a principal character.

Here, we will only highlight crucial sections of the proof of Dirichlet’s non-vanishing theorem (as shown by
J.P. Serre). A more complete proof of Theorem 2 can be found in [5].
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Let a be a fixed integer ≥ 1. If p - m, we denote the image of p in (Z/aZ)× by p. In addition, we use f(p)
to denote the order of p in (Z/aZ)×; i.e. f(p) is the smallest integer f such that pf ≡ 1 (mod a). We let

g(p) = φ(a)
f(p) . This is the order of the quotient of (Z/aZ)× by the subgroup (p) generated by p.

Lemma 1. For p - a, we have the identity:

∏
χ∈X(a)

(1− χ(p)T ) = (1− T f(p))g(p)

For the derivation of lemma 1, we let µf(p) denote the set of f(p)th roots of unity. We then have the identity:∏
w∈µf(p)

(1− wT ) = 1− T f(p) (7)

For all w ∈ µf(p), there exists g(p) characters χ ∈ X(a) such that χ(p) = w. This fact, together with (7),
brings us to lemma 1.

We now define a function ζa(s) as follows:

ζa(s) :=
∏

χ∈X(a)

L(χ, s)

We continue by replacing each L(χ, s) in the product by its product expansion as in (6), and then applying
lemma 1 with T = p−s.
Proposition 7. We can then represent the product expansion of ζa(s) as follows:

ζa(s) =
∏
p-a

1(
1− 1

pf(p)s

)g(p)
We note that this is a Dirichlet series with positive integral coefficients converging in the half plane Re(s) > 1.

We now wish to show (a) that ζa(s) has a simple pole at s = 1 and (b) that L(χ, 1) 6= 0 for all χ 6= χ0. The
fact that L(1, s) has a simple pole at s = 1 implies the same for ζa(s). Thus, showing (b) would imply (a).

Suppose for contradiction that L(χ, 1) = 0 for χ 6= χ0. Then ζa(s) would be holomorphic at s = 1, and
also for all s with Re(s) > 0. Since by proposition 7, ζa(s) is a Dirichlet series with positive coefficients, the
series would converge for all s in that domain. However, this cannot be true. We show this by expanding
the pth factor of ζa(s) as follows:

1

(1− p−f(p)s)g(p)
= (1 + p−f(p)s + p−2f(p)s + p−3f(p)s + . . .)

We then ignore crossterms with negative contribution to arrive at an upper bound:

1 +
1

pφ(a)s
+

1

p2φ(a)s
+

1

p3φ(a)s
+ . . .

Multiplying over p, it follows that ζa(s) has all its coefficients greater than the series:∑
n| gcd(a,n)=1

1

nφ(a)s
(8)

Evaluating equation (8) at s = 1
φ(a) , we finish the proof of theorem 2 by arriving at the following divergent

series: ∑
n| gcd(a,n)=1

1

n
.
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We now proceed with the proof of Dirichlet’s Theorem.

Proof of Theorem 1. Let X(a) denote the group of Dirichlet characters modulo a. We then fix gcd(a, b) = 1
as stated in Dirichlet’s Theorem. In addition, we let Ψ denote the set of prime numbers p ≡ b (mod a). Our
goal is to show that Ψ is an infinite set.

We wish to consider a function similar to the one in (2). We define:

Pb(s) :=
∑
p∈Ψ

1

ps
(9)

In particular, we wish to show that the function Pb(s) approaches ∞ as s approaches 1. This would imply
infinitely many elements in Ψ. We also define θb to be the characteristic function of the congruence class b
(mod a). In other words:

θb(n) =

{
1 if n ≡ b (mod a),

0 otherwise

Note that θb is periodic modulo a and is 0 when gcd(n, a) > 1.

Using this characteristic function, we wish to express Pb(s) as a sum over all primes:

Pb(s) =
∑
p∈P

θb(p)

ps

Lemma 2. For all n ∈ Z, we have:

θb =
∑

χ∈X(a)

χ(b−1)

φ(a)
χ(n)

Proof of Lemma 2. Using the multiplicative property of the Dirichlet character:

θb =
1

φ(a)

 ∑
χ∈X(a)

χ(b−1n)


By our orthogonality relation, the summation term becomes φ(a) if b−1n = 1 (i.e. if n ≡ b (mod a)) and
zero otherwise. The result is exactly θb.

Applying Lemma 2 to (9), we arrive at:

Pb(s) =
∑

χ∈X(a)

χ(b−1)

φ(a)

∑
p

χ(p)

ps
(10)

We recognize the second summation term as reminiscent of the Dirichlet series we defined earlier. We will
come back to this equation later.

Consider the convergent Taylor series expansion of log(1− z) for |z| < 1

log(1− z) = −
∞∑
n=1

zn

n
(11)

In addition, consider the Euler product representation of our Dirichlet series in (6). Applying logarithms,
we get:

log(L(χ, s)) = −
∑
p

log

(
1− χ(p)

ps

)
(12)
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Combining (11) and (12), we have:

log(L(χ, s)) =
∑
p

∑
n

1

n

(
χ(p)

ps

)n
(13)

The right side of (13) is absolutely convergent for Re(s) > 1, and is therefore an analytic function on that
half plane. We now denote the right hand side of (13) as l(χ, s).
Lemma 3. In the half plane with Re(s)> 1, el(χ,s) = L(χ, s).

The proof of Lemma 2 is shown in [3].

We now split l(χ, s) into two parts. The first part will be for the sums when n = 1, and the second part will
be for the sums when n > 1. We denote these as I (χ, s) and R(χ, s) respectively. Symbolically,

l(χ, s) = I (χ, s) + R(χ, s)

I (χ, s) =
∑
p

χ(p)

ps
,R(s, χ) =

∑
n≥2

∑
p

χ(p)n

npns

We now note that we can write Pb(s) from (10) as:

Pb(s) =
∑

χ∈X(a)

χ(b−1)

φ(a)
I (χ, s) (14)

Lemma 4. R(χ, s) is bounded when s = 1 (Recall, that we wish to show that Pb(s)→∞ as s→ 1).

This can be shown by comparing R(χ, s) to the well-known Basel problem:

|R(χ, 1)| ≤
∑
n≤2

∑
p

1

npn
≤
∑
p

∑
n≤2

1

pn
≤ 2

∑
n

1

n2
=

2π2

6

Since we know that R(χ, 1) is bounded, we can ignore it as it will not help us in showing that Pb(s) diverges
as s→ 1.

We now wish to split our summation from (14) into an expression with only principal characters, and a sum
over non-principal characters. Recall that a principal character χ0(n) = 1 for gcd(n, a) = 1, and 0 otherwise.

Pb(s) =
∑

χ∈X(a)

χ(b−1)

φ(a)
I (χ, s)

=
χ0(b−1)

φ(a)
I (χ0, s) +

∑
χ 6=χ0

χ(b−1)

φ(a)
I (χ, s)

Pb(s) =
1

φ(a)

∑
p-a

1

ps
+
∑
χ 6=χ0

l(χ, s) (15)

We know that a will have a finite number of prime divisors. This fact, together with equation (3), tells us
that the first term in (15) is unbounded. All that remains is to show that the second summation in (15) is
bounded as s → 1. Doing so will show that the primes (mod a) will fall into one of the φ(a) congruence
classes as claimed in theorem 1. To do this, we must use Dirichlet’s non-vanishing theorem (theorem 2).
Recall that L(χ, 1) 6= 0 if χ is not a principal character. Thus:

L(χ, s) = lim
s→1

L(χ, s) = lim
s→1

el(χ,s)
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Since logarithms of an analytic function differ only by multiples of 2πi, l(χ, s) = logL(χ, s) always remains
bounded as s → 1. As a result, the contribution to Pb(s) from non-principal Dirichlet characters remains
bounded, while the contribution from principal characters is unbounded. Pb(s) itself is then unbounded as
s→ 1. In conclusion, we have: ∑

p∈Ψ

1

ps
= lim
s→1

Pb(s) =∞

Thus, there must be infinitely many elements in Ψ, i.e. there are infinitely many primes congruent to b
modulo a for gcd(a, b) = 1.

1.5 Chebyshev’s Bias, Quadratic Residue, and the Legendre Symbol

As quite thoroughly shown by A. Granville and G. Martin in their paper, Prime Number Races [6], when we
“race” progressions, some progressions hold the lead for an overwhelming majority of the time. For example,
in the mod 4 race of 4n+ 1 against 4n+ 3, the bias is as much as 99.59% in favor of the 4n+ 3 team!

This bias, first observed by Chebyshev in 1853, is attributed to primes in the 4n + 1 progression being
quadratic residues modulo 4. As noted by Terry Tao [7]:

...Chebyshev bias asserts, roughly speaking, that a randomly selected prime p of a large magnitude
x will typically (though not always) be slightly more likely to be a quadratic non-residue modulo
q than a quadratic residue, but the bias is small (the difference in probabilities is only about
O( 1√

x
) for typical choices of x)

Definition 10. Let p be an odd prime number2 . We say that a number a is a quadratic residue (QR)
modulo p if there exists an element x in the set of totatives of p, such that x2 ≡ a (mod p).

(Note: p does not necessarily need to be prime for the definition of quadratic residues. However, as we will
see later, the modulus must be prime for our Legendre symbol model to work. Thus, we restrict our study
to only prime moduli).

For example, let us consider the set of totatives of 7, which is the set {1,2,3,4,5,6}:

Table 1: Quadratic Residues (mod 7)

x x2 x2 (mod 7) Conclusion
1 1 1 1 is a QR (mod 7)
2 4 4 4 is a QR (mod 7)
3 9 2 2 is a QR (mod 7)
4 16 2 2 is a QR (mod 7)
5 25 4 4 is a QR (mod 7)
6 36 1 1 is a QR (mod 7)

In this example, 1 is a quadratic residue since both 12 and 62 are congruent to 1 (mod 7). In addition, 4 is
a quadratic residue since 22 and 52 are congruent to 4 (mod 7), and 2 is a quadratic residue since 32 and 42

are congruent to 2 (mod 7). Note the symmetry of quadratic residues when ordered by x.

We now might like a convenient notation to quantify the notion of quadratic residues.

2Restriction is such that the Legendre symbol will be defined for any p.
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Definition 11. The Legendre symbol separates an integer a into three classes, depending on its residue
modulo an odd prime p.

(
a

p

)
=


1 if a is a quadratic residue (mod p),

−1 if a is a nonquadratic residue (mod p),

0 if a ≡ 0 (mod p)

Note: the Legendre symbol is only defined for p being an odd prime number. If a is a prime number 6= p, the
Legendre symbol will never be 0 (since two different prime numbers will be coprime) We know by Theorem
1 that the residues of a (mod p) are then equally distributed among congruence classes in {1, 2, 3 . . . , p− 1}.

Continuing with our definition, we introduce several properties of the Legendre symbol:

• The Legendre symbol is periodic on its top argument modulo p. In other words, if a ≡ b (mod p), then(
a

p

)
=

(
b

p

)
• The Legendre symbol is multiplicative on its top argument, i.e.(

a

p

)(
b

p

)
=

(
ab

p

)
• The product of two squares is a square. The product of two nonsquares is a square. The product of a

square and a nonsquare is a nonsquare. This can be expressed as follows:

Two squares : 1 · 1 = 1

Two nonsquares : −1 · −1 = 1

Square and nonsquare : 1 · −1 = −1

• The Legendre symbol can also be defined equivalently using Euler’s criterion as:(
a

p

)
≡ a(p−1)/2 (mod p)

Proposition 8. (Law of Quadratic Reciprocity) For p and q odd prime numbers:

(
q

p

)
= (−1) p−1

2
q−1
2

(
p

q

)
The Law of Quadratic Reciprocity [8] has several supplements for different values of a. Here, we only
introduce the first two supplements without proof. For x in the set of totatives of p:

1. x2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).

2. x2 ≡ 2 (mod p) is solvable if and only if p ≡ ±1 (mod 8).

These supplements can be expressed equivalently as follows:

1. (
−1

p

)
= (−1) p−1

2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4)

2. (
2

p

)
= (−1) p

2−1
8 =

{
1 if p ≡ 1, p ≡ 7 (mod 8),

−1 if p ≡ 3, p ≡ 5 (mod 8)

10



Continuing with our example for a in (Z/7Z)×, we have:

Table 2: Legendre Symbols (mod 7)

a 1 2 3 4 5 6(
a
7

)
1 1 −1 1 −1 −1

Proposition 9. In general, Chebyshev’s bias suggests that, in a race between αn + β1 and αn + β2, the
progression in which βi is a nonquadratic residue (mod α) will likely contain more primes up to x.

For instance, when racing 1 (mod 3) against 2 (mod 3), we observe that 2 (mod 3) almost always has more
primes up to x. Indeed, 1 is a quadratic residue (mod 3), and 2 is a nonquadratic residue (mod 3).

Table 3: Count of Primes in the mod 3 Race

x Primes in 3n+ 1 up to x Primes in 3n+ 2 up to x
101 1 2
102 11 13
103 80 87
104 611 617
105 4784 4807
106 39231 39266

Despite the apparent domination by the 2 (mod 3) team, a theorem from J.E. Littlewood (1914) asserts that
there are infinitely many values of x for which the 1 (mod 3) team is in the lead (of course, this theorem
applies to races in other moduli as well). In fact, the first value for which this occurs is at 608, 981, 813, 029
(discovered by Bays and Hudson in 1976).

In 1962, Knapowski and Turán conjectured that if we randomly pick an arbitrarily large value of x, then
there will “almost certainly” be more primes of the form 3n+2 than 3n+1 up to x. However, the Knapowski-
Turán conjecture was later disproved by Kaczorowski and Sarnak, each working independently. In fact if
we let ν denote the number of values of x(≤ X) for which there are more primes of the form 3n + 2, the
proportion ν

X does not tend to any limit as X → ∞, but instead fluctuates. This opens the question of:
what happens if we go out far enough? Will the race be unbiased if we set X sufficiently far away from 0?
That is, is Chebyshev’s bias only apparent for “small” values of X?

In 1994, while working with the mod 4 race, Rubinstein and Sarnak introduced the logarithmic measure to
find the percentage of time a certain team is in the lead [9]. Instead of counting 1 for each x(≤ X) where
there are more primes of the form 4n+ 3 than of the form 4n+ 1, Rubinstein and Sarnak count 1

x . Instead
of ν, the sum is then approximately lnX. They then scale this with the exact value of lnX to find the
approximate proportion of time the 4n+ 3 team is in the lead:

1 =
lnX

lnX
>

 1

lnX
·
∑
x≤X

1

x

→ 0.9959 . . .

where x in the summation is only over values where there are more primes of the form 4n + 3 than of the
form 4n+ 1.

For the mod 3 race, we have:  1

lnX
·
∑
x≤X

1

x

→ 0.9990 . . .

Using the logarithmic measure, we see that the 3n+ 2 team is in the lead 99.9% of the time!
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1.6 The Gaussian Primes

Definition 12. A Gaussian integer is a complex number whose real and imaginary parts are both integers.
The Gaussian integers form an integral domain, which we denote with Z[i].

In other words, for i2 = −1, we have:
Z[i] = {a+ bi|a, b ∈ Z}.

The units of Z[i] are ±i and ±1. In addition, we say that two elements, µ and ν are associated if µ = uν
for u being a unit in Z[i]. Because of the four units, Gaussian primes (along with their complex conjugates)
have an eightfold symmetry in the complex plane (figure 1). For convenience, we often write “primes” in
place of “primes unique up to associated elements.”
Definition 13. We say that an element in Z[i] is a Gaussian prime if it is irreducible, i.e. if its only divisors
are itself and a unit in Z[i].

One might initially believe that the primes in Z are also irreducible elements in Z[i]. However, this is not
the case. In fact, there is a surprising connection between primes in mod 4 arithmetic progressions in Z and
the Gaussian primes. To understand this connection, we must first introduce the concept of norm.
Definition 14. The norm function takes a Gaussian integer a + bi and maps it to a strictly positive real
value. We denote the norm of a Gaussian integer as N(a+ bi) = (a+ bi)(a+ bi) = (a+ bi)(a− bi) = a2 + b2.
In other words, the norm function takes a Gaussian integer and multiplies it by its complex conjugate. One
can geometrically understand the norm as the squared distance from the origin.

Let γ = α · β. The norm function is multiplicative; i.e. for γ, α, β elements in Z[i],

N(γ) = N(αβ) = N(α)N(β)

We also note that the norm of any unit is 1. For example, if α = i = 0 + 1i, then N(α) = 02 + 12 = 1. In
addition, we note that if an integer can be written as a sum of two squares, we can reduce it to two elements
with smaller norms. For example, we note that 5 = 22 + 12 = (2 + i) · (2− i) = (2 + i) · (2 + i) = N(2 + i).
Thus, if a prime p (in Z) can be written as a sum of squares, we know it is not a prime element in Z[i].
Proposition 10. If an odd prime p is a sum of squares, it is congruent to 1 (mod 4) and not a prime
element in Z[i].

Suppose p = a2 + b2. Since p is odd, exactly one of a or b must be odd, and the other even. For the proof,
we let a be odd. Let a = 2m+ 1 and let b = 2n. Then we have:

p = a2 + b2

= (2m+ 1)2 + (2n)2

= 4m2 + 4m+ 1 + 4n2

p ≡ 1 (mod 4)

Thus if p ≡ 1 (mod 4), p represents the norm of two primes in Z[i]. For example, p = 13 ≡ 1 (mod 4) and
13 = N(π1) = N(π2), where π1 = 2 + 3i and π2 = 3 + 2i. We note that π2 = i · π1. (Here, we also note that
counting primes in one quadrant is the same as counting primes unique up to associated elements).
Proposition 11. If an odd prime p is congruent to 3 (mod 4), then p is a prime element in Z[i].

For the proof, suppose for contradiction that we can factor p into (a+ bi) · (c+ di). Using the multiplicative
property of the norm function, we have:

N(p) = N(a+ bi) ·N(c+ di)

p2 = (a2 + b2) · (c2 + d2)

Since p is prime, p2 can only be either 1 · p2 or p · p. Since we do not want a unit as a factor, we let
(a2 + b2) = p and (c2 + d2) = p. However, by proposition 10, we know that a solution would imply that p is
a sum of squares; i.e. p ≡ 1 (mod 4). Thus, p ≡ 3 (mod 4) cannot be factorized; i.e. p is a Gaussian prime.
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We now have enough information to classify a Gaussian prime into one of three general cases. Let u be a
unit in Z[i]. Then:

• u(1 + i) Since p = 2 = N(1 + i)

• u(a+ bi) a2 + b2 = p ≡ 1 (mod 4)

• u(p) p ≡ 3 (mod 4)

Figure 1: Plot of Gaussian primes with norm ≤ 1032

Thus, we can see that primes in Z with quadratic residue (modulo 4) are not primes in Z[i]. Instead, they
represent the norms of two separate Gaussian primes. We can use this to derive an equation for the exact
count of Gaussian primes (unique up to associated elements) within a certain norm. Let πG(x) represent
the count of Gaussian primes up to norm x, then:

πG(x) = 2π(x; 4, 1) + π(
√
x; 4, 3) + 1

The extra count is to include the Gaussian prime at 1 + i, which has norm 2.

In addition, we can extend our prime number theorem in the rational integers (4) to a prime number theorem
in the Gaussian integers by a modification of Dirichlet’s Theorem (5). Moreover, we note the infinitude of
Gaussian primes by their intimate connection with Dirichlet’s Theorem for primes in mod 4 progressions.

πG(x) ≈ 2x

φ(4) log(x)
+

√
x

φ(4) log(
√
x)

(16)

The first term represents the approximation of primes congruent to 1 (mod 4), which are the norms of two
primes in Z[i]. The second term represents the approximation of primes congruent to 3 (mod 4), which have
a norm of p2 for p ∈ 4n+ 3. More precisely, we have:

lim
x→∞

πG(x)
2x

φ(4) log(x) +
√
x

φ(4) log(
√
x)

= 1
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The following code can be used in Sage to generate plots of Gaussian primes within a specified norm3:

def gi_of_norm(max_norm):

Gaussian_primes = {}

Gaussian_integers = {}

Gaussian_integers[0] = [(0,0)]

for x in range(1, ceil(sqrt(max_norm))):

for y in range(0, ceil(sqrt(max_norm - x^2))):

N = x^2 + y^2

if Gaussian_integers.has_key(N):

Gaussian_integers[N].append((x,y))

else:

Gaussian_integers[N] = [(x,y)]

if(y == 0 and is_prime(x) and x%4==3):

have_prime = True

elif is_prime(N) and N%4==1 or N==2:

have_prime = True

else:

have_prime =False

if have_prime:

if Gaussian_primes.has_key(N):

Gaussian_primes[N].append((x,y))

else:

Gaussian_primes[N] = [(x,y)]

return Gaussian_primes,Gaussian_integers

def all_gaussian_primes_up_to_norm(N):

gips = gi_of_norm(N)[0]

return flatten([uniq([(x,y), (-y,x), (y,-x), (-x,-y)]) for x,y in flatten(gips.values(),

max_level=1)], max_level=1)

N=10609 + 1 ### Declare norm here (in place of 10609)

P=scatter_plot(all_gaussian_primes_up_to_norm(N), markersize=RR(1000)/(N/50))

P.show(aspect_ratio=1, figsize=13, svg=False, axes = False)

2 Findings in the Rational Primes

2.1 Bias in the Legendre Symbols of Primes Modulo Another Prime

One phenomenon we wished to study in detail was Chebyshev’s bias, specifically in regards to a randomly
selected prime being more likely to have nonquadratic residue modulo some other prime. We approached
this by first attempting to model the bias as a “random” walk using Legendre symbol values as steps.

Let q and p be two randomly selected prime numbers. Then, according to Chebyshev’s bias,
(
q
p

)
has a

slightly less than half probability of being a quadratic residue (i.e. returning a 1). If we fix p and let q iterate
through all primes, we get a sequence of 1s and (−1)s (with the exception of when q = p, in which case we
have 0). If modeling as a random walk, the summation of our sequence should not wander far from y =

√
t,

where t denotes the index of the prime number q. Indeed, this is the case with all observed values of p up to
the final value of q (we tested for primes p < 1000 and for q iterating over primes < 10, 000, 000). However,
there is a noticeable bias in the summation. Most of the time, the summation of Legendre symbol values is
negative, supporting the claim that there are slightly more nonquadratic residues.

3We also created a video animation of Gaussian prime plots with norms from 101 to 107: https://youtu.be/jRBCmXGlVJU
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Figure 2: Legendre Symbol walk for p = 97

We wished to model the average behavior of our Legendre symbol walks. To do this, we recorded the ratio
of quadratic residues in each of our walks for p fixed as we increase the range of primes over which q iterates.
For example, when p = 97 and q iterates over all primes less than 1000, the ratio is 0.4698795. When we allow
q to iterate over all primes less than 10, 000, 000, the ratio of quadratic residues increases to 0.4997826. We
then plotted the average ratio for 167 values of p (p ∈ {3 ≤ all primes < 1000}). In addition, we plotted the
within-p standard deviation of our ratio for each range of q iterated. Since most primes have nonquadratic
residue modulo another prime, the average ratio seems to converge to 0.50 from below as we increase the
q-range.

Figure 3: Plot of the Average Ratios. Horizontal axis denotes log(x), where x is
the range over which q iterates. Vertical bars represent 1 standard deviation

We repeated our experiments with
(
p
q

)
for p fixed and q varying and arrived at similar results. For p ≡ 1

(mod 4), we know from quadratic reciprocity that
(
p
q

)
=
(
q
p

)
, so the contribution is the same (see theorem

10 in [10]). For p ≡ 3 (mod 4),
(
p
q

)
6=
(
q
p

)
. However, Chebyshev’s bias still exists (i.e. there are slightly

fewer +1s than -1s). As a result, the average behavior is similar.
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2.2 Bias in the Legendre Symbols of consecutive Primes

Our next experiment in the rational primes was to examine the ratio of consecutive quadratic or nonquadratic
residues for primes q modulo a fixed prime p. I.e. we wished to model the behavior of the ratio of 1, 1s or
−1,−1s.

Since the probability of q (mod p) being is quadratic residue is very slightly less than 0.5, we should expect

expect our average ratio to converge to
(

1
2

)n−1
from below, where n denotes the length of the consecutive

chain. For example, for the ratio of three consecutive quadratic or nonquadratic residues, we expect to obtain
approximately: (1

2 )3 + (1
2 )3 ≈ ( 1

2 )3−1. (The first term in the summation represents the probability of 3
consecutive quadratic residues, and the second term represents the probability of 3 consecutive nonquadratic
residues). However, in a very recent paper (March, 2016), R. Lemke Oliver and K. Soundararajan [11], note
that there is a much stronger bias in the residue of consecutive primes than expected. We set out to model
this (stronger) bias with our Legendre symbol walk.

We repeated our average ratio experiment as in section 2.1. However, we instead searched for 2, 3, and 4
consecutive residues having the same sign. We notice that the average ratios converge to their expected
values quite slowly, supporting R. Lemke Oliver and K. Soundararajan’s recent discovery.

Figure 4: From Left to Right: Two Consecutive, Three Consecutive, Four Consecutive

2.3 Bias in the Legendre Symbols Modulo Primes in the Mod 4 Races

We repeated our Legendre symbol walk with fixed p, but for q varying only over primes congruent to 1 (mod
4), and again with primes congruent to 3 (mod 4). We observed Chebyshev’s bias in both cases (on average).
However, when q varied over primes congruent to 1 (mod 4), we noticed a much stronger bias. For example,
if we consider the walks for p=97, the walk for q ≡ 1 (mod 4) seems to lie mostly below the t-axis. On the
other hand, the walk for q ≡ 3 (mod 4) seems to lie mostly above the t-axis.

Figure 5: From Left to Right: iterating over all q, q ≡ 1 (mod 4), q ≡ 3 (mod 4).
Iteration range for q in all plots is 10, 000, 000

.
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We wished to check if this pattern exists on average. For q ≡ 1 (mod 4), the average converges to 0.50
more slowly than the average for q ≡ 3 (mod 4). It seems that only allowing q to iterate over primes with
nonquadratic residue (mod 4) removes, or at least diminishes, some part of Chebyshev’s bias. We noticed
a similar, but less distinct (see section 2.2 and [7]), pattern while testing for consecutive residues being the
same.

Figure 6: Average ratios of quadratic residues for
(
q
p

)
Left: q ≡ 1 (mod 4).
Right:q ≡ 3 (mod 4)

.

The following simple code can be used in Sage to generate a plot for Legendre symbol walks of
(
q
p

)
:

#declares maximum q-iteration range

maxN=10^7

#P must be an odd prime for legendre_symbol(q,P) to be defined

P = 97

primes = prime_range(3, maxN)

pm4={1:[], 3:[]}

pm4[1] = [q for q in primes if q % 4 == 1]

pm4[3] = [q for q in primes if q % 4 == 3]

#replace "3" with "1" to model walk with quadratic residues (mod 4)

lqP = [legendre_symbol(q, P) for q in pm4[3]]

print "Legendre symbol walk for P={} and q iterating over primes less than {}".format(P,maxN)

sum_lqP = TimeSeries(lqP).sums()

#replace "3" with "1" to model walk with quadratic residues (mod 4)

sum_lqP.plot()+plot([sqrt(x),-sqrt(x)],(x,0,len(pm4[3])))
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3 Findings in the Gaussian Primes

Chebyshev’s bias in the rational primes has been well-documented. However, there has been comparatively
less experimental research on such a bias in the Gaussian primes. In this section, we extend our model of
Legendre symbol walks to the Gaussian primes to see if a similar bias occurs. To do this, we must first
introduce a way to map a Gaussian integer to its residue in the rational integers modulo a Gaussian prime.
Proposition 12. A map that sends a Gaussian prime a+ bi to a residue r (mod π), where π = α + βi, is
an isomorphism of rings between Z[i]/πZ[i] and Z/pZ, where p = N(π). In particular, if π is an irreducible
element in Z[i], then the residue class ring Z[i]/πZ[i] is a finite field with N(π) elements.

A rigorous proof of proposition 12 can be found in [12] as Theorem 12.

We first start with a “soft” proof as motivation for calculating a residue before showing a more rigorous
proof. For two primes p and q, the Euclidean algorithm shows that the gcd(p, q) = 1. This fact allows us to
easily calculate the residue of q (mod p). Let p and q be prime numbers with q > p. Let n and r be integers:

q = pn+ r

q − r = pn

q − r ≡ 0 (mod p)

r ≡ q (mod p)

Where r is a element from (Z/pZ)×; i.e. r is an element from the set of totatives of p.

We can extend this algorithm to the Gaussian primes. Let a + bi and π = α + βi denote Gaussian primes
with N(a+ bi) > N(α+ βi) = N(π). We can then write:

a+ bi = π(φ+ iψ) + r

a+ bi = (α+ βi)(φ+ iψ) + r

a+ bi = αφ+ αiψ + βiφ− βψ + r

We then group the real and imaginary terms:

a = αφ− βψ + r

b = αψ + βφ

Use the imaginary component to solve for ψ, then solve for a:

ψ =
b− βφ
α

a = αφ− β
(
b− βφ
α

)
+ r

a = αφ− bβ

α
+
β2φ

α
+ r

Rearrange, multiply both sides by α, and solve for r:

a+
bβ

α
+ r = αφ+

β2φ

α

aα+ bβ − rα = φ(α2 + β2)

aα+ bβ − rα ≡ 0 (mod α2 + β2)

aα+ bβ ≡ rα (mod α2 + β2)

r ≡ a+ α−1bβ (mod α2 + β2) (17)

where r is an element from (Z/(α2 + β2)Z)× = (Z/N(π)Z)× = (Z/pZ)× since α2 + β2 = N(π) = p.
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The idea is to use this residue to calculate the value of a Gaussian Legendre symbol
[
a+bi
π

]
with the hope

of observing a bias as in the rationals. First, we must lay the groundwork by introducing several concepts.
(A comprehensive reference by Nancy Buck regarding Gaussian Legendre symbols, which includes the full
proofs for the following propositions, can be found in [12]. Since many of the proofs are quite lengthy, we
will only highlight sections relevant for our model).
Definition 15. For k, l, π ∈ Z[i], let π be a Gaussian prime 6= u(1+ i) and such that k and l are not divisible
by π. The Gaussian Legendre symbol has the following properties:

•
[
k

π

]
=

[
l

π

]
for k ≡ l (mod π)

•
[
k

π

]
·
[
l

π

]
=

[
kl

π

]
For p = N(π), the second point can be equivalently expressed as:

k
p−1
2 l

p−1
2 = (kl)

p−1
2 ≡

[
kl

π

]
(mod π)

In addition, we have an analog of Euler’s criterion in the Gaussian Legendre symbols:[
k

π

]
≡ k(p−1)/2

Theorem 3. Every Gaussian Legendre symbol can be expressed in terms of a Legendre symbol in the rational
integers.

In particular, we have the following two equations for

[
k

π

]
. Let k = a+ bi, π = α+βi, and N(π) = p. Then:

[
a+ bi

α

]
=

(
a2 + b2

α

)
; π ≡ 3 (mod 4) (18)[

a+ bi

α+ βi

]
=

(
aα+ bβ

p

)
; N(π) ≡ 1 (mod 4) (19)

Recall that if π is a prime element in Z[i], a zero imaginary part implies that π = α ≡ 3 (mod 4). For the
proof of equation (18), we must show that there exists an element x ∈ Z[i] such that x2 ≡ a + bi (mod α)
has a solution. We set x = φ + ψi so that φ2 − ψ2 + 2φψi ≡ a + bi (mod α). Then we have the following
two congruences by grouping real and imaginary terms:

φ2 − ψ2 ≡ a (mod α)

2φψ ≡ a (mod α)

We then square each congruence and add them together to get:

φ4 + 2φ2ψ2 + ψ4 = (φ2 + ψ2)2 ≡ a2 + b2 (mod α)

It then suffices to check that there exists φ and ψ ∈ Z[i] such that both congruences have simultaneous

solutions for the cases a 6≡ 0 (mod α) and a ≡ 0 (mod α) (shown in [12]). Doing so shows that

[
a+ bi

α

]
= 1

if and only if

(
a2 + b2

α

)
= 1. In other words, we arrive at equation (18):

[
a+ bi

α

]
=

(
a2 + b2

α

)
.

We now wish to consider the more interesting case when N(π) ≡ 1 (mod 4); i.e. when π = α + βi for
α, β ∈ Z\{0} and π 6= (1 + i). Let α be odd and β be even. Let k = a+ bi with a, b ∈ Z and gcd(π, k) = 1.
As above, we wish to determine if x2 ≡ a+ bi (mod π) has a solution for x ∈ Z[i].
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Recall that p = N(π) is a prime congruent to 1 (mod 4). By proposition 12, we know the set of congruence
class representatives modulo π is {0, 1, 2, . . . , p−1}. This allows us to only consider x ∈ Z when determining
if x2 ≡ a+ bi (mod π) has a solution.

We start by writing our congruence as an equivalence. The congruence x2 ≡ a + bi (mod π) is solvable if
and only if there exists x, φ, ψ ∈ Z such that:

x2 − a− bi = (φ+ ψi)(α+ βi)

x2 − a− bi = φα+ φβi+ αψi− βψ

We then group the real and imaginary terms into separate equations:

x2 − α = φα− βψ
−b = φβ + αψ

Then we multiply the real part by α and the imaginary part by β and add:

x2 − aα = φα2 − βψα
−bβ = φβ2 + αβψ

x2α− aα− bβ = φα2 + φβ2

x2α− aα− bβ = pφ

x2α = pφ+ aα+ bβ

Converting back to a congruence statement modulo p, we arrive at the following result:

x2α ≡ aα+ bβ (mod p)(
x2α

p

)
=

(
aα+ bβ

p

)
=

(
α

p

)(
a+ α−1bβ

p

)
=

(
α

p

)(
r

p

)
(20)

All that remains is to show that

(
α

p

)
= 1. To do this, we use the law of quadratic reciprocity as described

in proposition 8: (
α

p

)
= (− 1)(α−1)(p−1)/4

( p
α

)
Since p ≡ 1 (mod 4), p − 1 ≡ 0 (mod 4). Thus,

(
α

p

)
=
( p
α

)
. In addition, recall that p = α2 + β2, so

p ≡ β2 (mod α). Thus, we can write

(
α

p

)
=
( p
α

)
=

(
β2

α

)
=

(
β

α

)(
β

α

)
. It is then clear that regardless

of the value of

(
β

α

)
, we have

(
α

p

)
= 1.

In conclusion, we arrive at equation (19):[
a+ bi

α+ βi

]
=

(
aα+ bβ

p

)
=

(
r

p

)
The Experiment.

While implementing our random walk model on Sage, we decided to fix π = α + βi and let a + bi iterate
over Gaussian primes in the first quadrant sorted by increasing norm. In the case of a+ bi = a ≡ 3 (mod 4),
the sorting is obvious. However, when N(a+ bi) = q ≡ 1 (mod 4), there are exactly two (distinct) Gaussian
primes with norm q (we have a + bi and b + ai = i(a+ bi), where a2 + b2 = q). When this is the case, we
sort by the size of the real component. (For example, when q = 17 = N(1 + 4i) and N(4 + i), we find the
residue of 1 + 4i (mod π) first and then proceed to find the residue of 4 + i (mod π)).
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When viewed individually, the resulting plots resemble the Legendre symbol walks in section 2.1. However,
we observe an interesting phenomenon when comparing walks that have the same p = N(π1) = N(π2) where
π1 and π2 are fixed with a+ bi iterating. We noticed for some p, the plots for π1 and π2 have strong positive
correlation. For other p, the plots for π1 and π2 have strong negative correlation.

Figure 7: Gaussian Legendre symbol walks for p = 97
(strong positive correlation)

Left:

[
a+ bi

4 + 9i

]
. Right:

[
a+ bi

9 + 4i

]
.

Figure 8: Gaussian Legendre symbol walks for p = 29
(strong negative correlation)

Left:

[
a+ bi

2 + 5i

]
. Right:

[
a+ bi

5 + 2i

]
.

Before we attempt to (partially) explain this phenomenon, we must first introduce additional theory.
Theorem 4. The following 3 properties hold for the Gaussian Legendre symbol

[
i

α+ βi

]
= (−1)

p−1
4 (21)[

1 + i

α+ βi

]
= (−1)

(α+β)2−1
8 (22)[

a+ bi

α+ βi

]
=

[
α+ βi

a+ bi

]
(23)
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The proof of equation (21) is as follows:

From Euler’s criterion in the Gaussian Legendre symbols, we know that i(p−1)/2 ≡
[

i

α+ βi

]
(mod α+ βi).

We note that i(p−1)/2 can be rewritten as follows:

i
p−1
2 = i2·

p−1
4 = (−1) p−1

4 .

Thus, we have the congruence:

(−1) p−1
4 ≡

[
i

α+ βi

]
For a proof by contradiction, we assume that the left side 6≡ the right side. Then let −1 ≡ 1 (mod α+ βi).
Converting the congruence to an equivalence, we get:

−2 = (α+ βi)(φ+ ψi)

We then take norms of both sides and simplify:

N(−2) = N(α+ βi)N(φ+ ψi)

4 = p ·N(φ+ ψi)

This implies that p|4, which cannot be true since p ≡ 1 (mod 4). Therefore, we arrive at equation (21):[
i

α+ βi

]
= (−1)

p−1
4 .

For the proof of equation (22), we must consider two cases: when β = 0 and when β 6= 0.

Case 1: let β = 0, so p = α2 and α ≡ 3 (mod 4). Recall our relations between the Gaussian Legendre
symbols and the Legendre symbols in the rational integers as shown in theorem 3. From equation (18), we
have: [

1 + i

α

]
=

(
1 + 1

α

)
=

(
2

α

)
Recall our second supplement of quadratic reciprocity in the rational integers. We can then express this as:(

2

α

)
= (−1)α

2−1
8 = (−1)

(α+β)2−1
8

Case 2: Let β 6= 0, so p = α2 + β2 and p ≡ 3 (mod 4). By equation (19), we have:[
1 + i

α+ βi

]
=

(
α+ β

p

)
.

Since our model only uses prime elements in the first quadrant, we assume that |α + β| > 1 (the full proof
without this assumption can be found in [12]). We continue by using the law of quadratic reciprocity:(

α+ β

p

)
= (−1)( p−1

2 )(α+β−1
2 )

(
p

α+ β

)

Since p ≡ 1 (mod 4), then
(
p−1

2

)
is always even. Thus,

(
p−1

2

) (
α+β−1

2

)
is even. So

(
α+ β

p

)
=

(
p

α+ β

)
.

22



Next, we multiply p by 2 and apply a clever series of manipulations. We note that:

2p = 2(α2 + β2)

= α2 + 2αβ + β2 − 2αβ

= (α2 + β2)(α2 − β2)

0 = (α+ β)2 + (α− β)2 − 2p

−(α+ β)2 = (α− β)2 − 2p

0 ≡ (α− β)2 − 2p (mod α+ β)

2p ≡ (α− β)2 (mod α+ β)

Let x = (α− β)2. Then there exists a solution to the congruence x2 ≡ 2p (mod α+ β). Then we have:(
x2

α+ β

)
=

(
x

α+ β

)(
x

α+ β

)
= 1(

x2

α+ β

)
=

(
2p

α+ β

)
= 1(

2p

α+ β

)
=

(
2

α+ β

)(
p

α+ β

)
= 1

Which implies that

(
2

α+ β

)
=

(
p

α+ β

)
=

(
α+ β

p

)
=

[
1 + i

α+ βi

]
. Using the second supplement to

quadratic reciprocity, we have: [
1 + i

α+ βi

]
=

(
2

α+ β

)
= (−1)

(α+β)2−1
8 .

For the proof of equation (23), we must consider three cases:

1. b = β = 0

2. b = 0 and β 6= 0

3. b 6= 0 and β 6= 0.

Case 1: Let b = β = 0. Then by equation (18):[ a
α

]
=

[
a2

α

]
= 1[α

a

]
=

[
α2

a

]
= 1

It is then clear that
[ a
α

]
=
[α
a

]
= 1.

Case 2: Assume b = 0 and β 6= 0. Then:[
a

α+ βi

]
=

(
aα

p

)
=

(
a

p

)(
α

p

)
=

(
a

p

)

Recall we have already shown in theorem 3 that

(
α

p

)
= 1. Then we have:

[
α+ βi

a

]
=

(
α2 + β2

a

)
=
(p
a

)
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From quadratic reciprocity, we know that

(
a

p

)
= (−1)

(p−1)(a−1)
4

(p
a

)
Since p ≡ 1 (mod 4), we then see that(

a

p

)
=
(p
a

)
. Thus, we have: [

a

α+ βi

]
=

[
α+ βi

a

]
.

Case 3: Assume both b and β are nonzero. Since a + bi and α + βi are distinct odd Gaussian primes, we
have: [

a+ bi

α+ βi

]
=

[
aα+ bβ

p

]
[
α+ βi

a+ bi

]
=

[
aα+ bβ

q

]
where p = α2+β2 and q = a2+b2. Since we are working in the first quadrant, we assume that aα+bβ > 1. We
then wish to perform another manipulation (the idea is similar to the proof of equation (22)). In particular,
we wish to show that a certain congruence is solvable (mod aα+ bβ). We note that:

(aα+ bβ)2 + (aβ − bα)2 = a2α2 + 2abαβ + b2β2 + a2β2 − 2abαβ + b2α2

= a2α2 + b2β2 + a2β2 + b2α2

= (α2 + β2)(a2 + b2)

(aα+ bβ)2 + (aβ − bα)2 = pq

(aα+ bβ)2 = pq − (aβ − bα)2

0 ≡ pq − (aβ − bα)2 (mod aα+ bβ)

pq ≡ (aβ − bα)2 (mod aα+ bβ)

We then set aβ − bα = x. Thus we have the congruence:

pq ≡ x2 (mod aα+ bβ).

To finish the proof, we show: (
x2

aα+ bβ

)
=

(
x

aα+ bβ

)(
x

aα+ bβ

)
= 1

=

(
pq

aα+ bβ

)
=

(
p

aα+ bβ

)(
q

aα+ bβ

)
= 1

which implies that

(
p

aα+ bβ

)
=

(
q

aα+ bβ

)
. Since we know that p and q are primes in Z that are congruent

to 1 (mod 4), by quadratic reciprocity, we can equivalently write this as:

(
aα+ bβ

p

)
=

(
aα+ bβ

q

)
. By

applying equation (19) of theorem 3, we then see that

[
a+ bi

α+ βi

]
=

[
α+ βi

a+ bi

]
.
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We now attempt to explain the strong (±) correlations we observed between Gaussian Legendre symbol walks
with π1 and π2 fixed, where π2 = iπ1 and for a+ bi iterating over Gaussian primes in the first quadrant.

We first wish to establish a relationship between

[
a+ bi

α+ βi

]
and

[
b+ ai

α+ βi

]
. This will allow us to find their

combined contribution. (Recall the iteration order is one of

[
a+ bi

α+ βi

]
→
[
b+ ai

α+ βi

]
or

[
b+ ai

α+ βi

]
→
[
a+ bi

α+ βi

]
,

based on the size of the real part).

To find the conditions such that

[
a+ bi

α+ βi

]
=

[
b+ ai

α+ βi

]
we set:

1 =

[
a+ bi

α+ βi

]
·
[
b+ ai

α+ βi

]
=

[
ab+ a2i+ b2i− ab

α+ βi

]
=

[
i

α+ βi

]
·
[
a2 + b2

α+ βi

]
= (−1)(p−1)/4

[
q

α+ βi

]
= (−1)(p−1)/4

(
q

p

)(
α

p

)
= (−1)(p−1)/4

(
q

p

)
(24)

Thus,

[
a+ bi

α+ βi

]
=

[
b+ ai

α+ βi

]
if p−1

4 is even and

(
q

p

)
= 1, or if p−1

4 is odd and

(
q

p

)
= −1. The conditions

for the equivalence of

[
a+ bi

β + αi

]
=

[
b+ ai

β + αi

]
are similar.

Case 1: Let π1 = α+ βi and π2 = β + αi, where N(π1) = N(π2) = p. Let p−1
4 be an even integer. Suppose(

q

p

)
= 1. Then by our equivalence relations, we have:[

a+ bi

α+ βi

]
=

[
b+ ai

α+ βi

]
and

[
a+ bi

β + αi

]
=

[
b+ bi

β + αi

]
Thus, whether the iteration order is

[
a+ bi

α+ βi

]
→
[
b+ ai

α+ βi

]
or

[
b+ ai

α+ βi

]
→
[
a+ bi

α+ βi

]
, the combined contri-

bution is one of ±2. The same is true with

[
a+ bi

β + αi

]
→
[
b+ ai

β + αi

]
or

[
b+ ai

β + αi

]
→
[
a+ bi

β + αi

]
.

We now consider the case when p−1
4 is still an even integer, but

(
q
p

)
= −1. Then by our equivalence

relations, we have: [
a+ bi

α+ βi

]
6=
[
b+ ai

α+ βi

]
and

[
a+ bi

β + αi

]
6=
[
b+ ai

β + αi

]
Thus, for any norm-sorted iteration order, the combined contribution will be 0.

Case 2: Now we let p−1
4 be an odd integer. Suppose

(
q

p

)
= 1. From our equivalence relations, we know

that: [
a+ bi

α+ βi

]
6=
[
b+ ai

α+ βi

]
and

[
a+ bi

β + αi

]
6=
[
b+ ai

β + αi

]
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Then for any norm-sorted iteration order, the combined contribution from a+ bi and b+ ai will be zero for
both walks of π2 and π2.

Now we consider the case when p−1
4 is still odd, but

(
q
p

)
= −1. In this case,

[
a+ bi

α+ βi

]
=

[
b+ ai

α+ βi

]
. Thus,

for any norm-sorted iteration order, the combined contribution will be one of ±2.

If we can establish the conditions for equivalence between

[
a+ bi

α+ βi

]
and

[
a+ bi

β + αi

]
we will be able to fully

explain the strong positive and negative correlations observed. (Note: it still remains to show what happens
when a + bi iterates over Gaussian primes a + bi = a ≡ 3 (mod 4). However, since prime elements of
this form are much more sparse by equation (16), we can ignore them for the purposes of our explanation).
Unfortunately, we found it quite difficult to rigorously prove the equivalence conditions (in particular, because

the Legendre (more precisely, Jacobi) symbol

(
p

β

)
is not defined for β an even integer), so we leave it as a

conjecture.

Conjecture. The equivalence between

[
a+ bi

α+ βi

]
and

[
a+ bi

β + αi

]
depends only on the value of the Legendre

symbol

(
q

p

)
. In particular,

[
a+ bi

α+ βi

]
=

[
a+ bi

β + αi

]
if

(
q

p

)
= 1, and

[
a+ bi

α+ βi

]
6=
[
a+ bi

β + αi

]
if

(
q

p

)
6= 1.

We will use the following shorthand notation for clarity and convenience:

π1a =

[
a+ bi

α+ βi

]
π1b =

[
b+ ai

α+ βi

]
π2a =

[
a+ bi

β + αi

]
π2b =

[
b+ ai

β + αi

]
π1 = π1a + π1b π2 = π2a + π2b

To summarize, we have shown (conjectured) the following relations:

π1aπ1b = (−1)(p−1)/4

(
q

p

)
(25)

π2aπ2b = (−1)(p−1)/4

(
q

p

)
(26)

π1aπ2a =

(
q

p

)
(27)

π1bπ2b =

(
q

p

)
(28)

We can now explain the strong (±) correlations between plots for π1 and π2 fixed.

Consider the case when p−1
4 is even and

(
q

p

)
= 1. If π1a = 1 (resp. −1), then by equation (25), π1b = 1

(resp. −1). Using equation (27), π2a = 1 (resp. −1), and by equation (26), π2b = 1 (resp. −1). Thus, when

p−1
4 is even and

(
q

p

)
= 1, the walks for π1 and π2 move exactly together with combined contribution one

of ±2. Consider the case when p−1
4 is even and

(
q

p

)
= −1. If π1a = 1 (resp. −1), then by equation (25),

π1b = −1 (resp. 1). Using equation (27), π2a = −1 (resp. 1), and by equation (26), π2b = 1 (resp. −1).
Then π1 and π2 do not move together, but the combined contribution for that particular q is 0, so there is
little movement and the correlation remains close to +1.
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Consider the case when p−1
4 is odd and

(
q

p

)
= 1. If π1a = 1 (resp. −1), then by equation (25), π1b = −1

(resp. 1). Using equation (27), π2a = 1 (resp. −1), and by equation (26), π2b = −1 (resp. 1). Thus, when

p−1
4 is odd and

(
q

p

)
= 1, the walks move together, but with a combined contribution of 0 for that particular

q. Consider the case when p−1
4 is odd and

(
q

p

)
= −1. If π1a = 1 (resp. −1), then by equation (25), π1b = 1

(resp. −1). Using equation (27), π2a = −1 (resp. 1), and by equation (26), π2b = −1 (resp. 1). Then π1

and π2 move exactly opposite to each other, causing the correlation to remain close to −1.

4 Conclusions

If one performs a Legendre symbol race in the rational primes, the sorting is obvious. However, if one
extends the model to the Gaussian primes, the sorting is less clear. In this project, we only used one sorting
order (by norm and then by size of real part). In addition, we only considered primes in the first quadrant.
Perhaps future projects can model Gaussian Legendre symbol walks with different sorting orders, iterating
over different combinations of quadrants, and up to greater norm values. Moreover, we mostly ignored the
contribution of Gaussian primes of the form a ≡ 3 (mod 4) since they are much less numerous. Although
it was not rigorously discussed, it seems that primes of this form contribute to a bias toward nonquadratic
residues when comparing plots with odd p−1

4 (i.e. the plots with negative correlation). It would be interesting
to quantify their effect on the correlation between the plots of π1 and π2. In addition, we noted in section 2.3
that a Legendre symbol walk over rational primes ≡ 3 (mod 4) seems to reduce some of Chebyshev’s bias.
It would be interesting to see an explanation for this phenomenon as well (perhaps there is an interesting
connection to the Gaussian primes). We hope that we outlined enough theory for an inquisitive reader to
begin asking their own questions about the fascinating Gaussian primes.
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