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Abstract

Equations governing the interaction of vortices were investigated, and point vortex model has
been used to obtain set of ODEs. General algorithm to find the conservation law multipliers and
their corresponding conservation laws was applied to systems such as the harmonic oscillator,
gravitational 2-body problem and in detail to 2- vortex problem. Obtained multipliers and
conserved quantities from 2-vortex problem were generalized to N-vortex problem, then they
were discretized for N=2, N=3. Resulting discretizations were then used to find a numerical
scheme for the 3-vortex ODE that preserves the conservation laws at the discrete level. A
numerical solution was obtained by coding the obtained schemes. The behavior of the conserved
quantities were analyzed and compared with standard schemes.
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Chapter 1

Introduction

This section will present the derivation of point-vortex problem on a plane from incompressible
Navier-Stokes equation. Crucial assumptions that lead to the point vortex equation will be
stated. Furthermore, the Hamiltonian structure of the equations will be discussed.

1.1 Derivation of the vorticity equation on the plane

The dynamics of fluids is governed by Navier-Stokes equations. For in-compressible flow in 2-D
Navier-Stokes equation becomes,

p (% + (7 V) 17) = —VP + uV?7,

V.7 =0,

where, (7- V) is the Jacobian matrix of the velocity vector field @ = i + 7. If the fluid is
invicid (1 = 0), viscous term V2% is no longer present which results in Euler’s equations,

ov
— U - 7] = —-VP
p(at+(v V)v) VP,
V. -v=0.

The vorticity(w) of the flow is a measure of rotation of a fluid parcel and is defined as the curl
of the velocity field(V x ¢ = @ = wk). Taking the curl on both sides of the Euler’s equation
yields,

p<VxZ—f+Vx(U~V)U>:Vx(—VP):O. (1.1)

Using the vector identities,

v

V x (17-V)17:V><V(T) —Vx (@xw)= @ - V)W — (0-V)T+d(V-0)+0(V-0),
incompressibility, furthermore realizing that V- & =0 and (w - V)7 =0 in 2-D | equation
simplifies to,

Dw 0w

—=—+4+(0-V)u=0

ot o TV
Thus the material derivative of vorticity being zero implies that the vorticity of a fluid parcel is
constant in time, and vorticity is conserved.In order to yield simpler equations we will assume
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1.2. POINT VORTEX PROBLEM ON THE PLANE

that vorticity field is manifested by point vortices which can be represented by Dirac delta
distribution.In this assumption the vorticity is infinite at the vortex and zero everywhere else.
Point vortices will create vorticity field which has a corresponding velocity field. Each point
vortex will create a vorticity field which acts on all vortices except itself. Consequently each
point vortex will get affected by the superposition of vorticity fields of other vortices. Resulting
vorticity field due to N vortices is,

N

w () =Y Tad (r—ra),

a=1

where T, is the circulation strength of the a-th point vortex.
By the Helmholtz decomposition, any 2D vector field(¥') which is sufficiently smooth and rapidly
decaying at infinity can be resolved into a sum of solenoidal and irrotational vector fields such
that,

7= —-Vo+V x (k). (1.2)

Taking the curl of both sides of equation results in Poisson’s Equation and noticing that in
2-D, V- (®k) = 0, leads to
T=V xT=V x (—V®)+V><V><\I7:V<V-\I7> g vetd

= w=—V20.

The solution is given by ¥ (7) = [ G(r,r")w(r’)dr’, where G(r,r’) is the Green’s Function given
by,

1
G(r,r') = - In ||r — 7|2
T

Thus,
1 N
U(r) = /_E In ||r — 7'||? (; .o (r— ra)> dr’,
1 — )
U(r) = —%;Falnﬂr—mn (1.3)
Note that incompressibility condition is satisfied since v = %—‘;’% — %—i’j = —V x ¥ and so,
V.5 0*W 0*W

Oyox B 0x 0y =0

1.2 Point vortex problem on the plane

Hence by and,the velocity vector for each point vortex is given by

. ov . ov
To = 7 o — ’
Yo Y O,
N N
d o _1 F o d o 1 F o
S%a _oyn Tolamu) A _ 1 g Ta(Eam ) for  a=123..
dt 2T s dt 2m s
B=1,B#a a B8=1,6#a o
(1.4)

One special feature of these equations is that it is a Hamiltonian system. By re-scaling the
equations one could rewrite as ,



1.2. POINT VORTEX PROBLEM ON THE PLANE

H H
doo _ O Wa _ 0O a=1,23...

lo—r =+ a5 = 57—,
“dt e’ dt 0%,

where

N
1
H = _E Z Fargln‘Tagl.
a,f=1
a#B

Physically, the Hamiltonian represents the kinetic energy of the fluid,

N
1 L1 1
K.E - §/||v|| QA - §/w\IfdA = > TuTinlrasl

a,f=1
a8



Chapter 2

Conservation Law Multipliers

In this section, the theory of conservation law multipliers will be briefly described. In particular,
the general method for obtaining conservation law multipliers and associated conservation laws.
In order to illustrate the method, the theory will be applied on various system of differential

equations.

2.1 Theory of conservation law multipliers

We review the theory of conservation law multipliers from [2, 1] for ODEs.

Let F( , T, ,f, 7.
tity (¢, T, ZT, T -
such that,

-) = O represent a system of differential equations. For each conserved quan-
.- there exists one or more conservation law multiplier,\(t, Z, 7, &, - - - )

X-ﬁ:Dt@):o,

on F' = 0 where ® is an equivalent conservation law of ®. This means that A - F must be the
total derivative of some scalar function ® with respect to ¢. Combining all multiplier vectors
in one matrix, as row vectors, one can construct the multiplier matrix A . Moreover, one can
represent corresponding conserved quantities as a single vector CI;, to obtain,

AF = D, (5)

The conservation law multipliers A can be found by the method of Euler-Lagrange Operator.
If A+ F'is a total derivative then Euler-Lagrange operator £() applied to A - F' should vanish for

arbitrary smooth function x( ). In other words,

OXF

o1

ONF

0o

(9)\ F
“Dx3

INF

OTm

d

dt

4
dt
—d
di

4
dt

(

ONF
XE) 4
ONF

02 +
ON-F

0x3 +
ON-F

OTm

)+

d2
dt?

d2
dt?

(

(

ONF
0z ) +--
ONF
02
OX-F
0x3

OX-F
O0Tm

>+..

for arbitrary smooth function ZL‘( ). We illustrate the concept by example.

+ (1)

OX-F
oxn,

P ) a
Z?:O(_]')Z% (%U{‘

.90 6”.“
S (1) (A

i di [ OX-
Z?:o(_l)zw W};F




2.2. EXAMPLE: HARMONIC OSCILLATOR

2.2 Example: Harmonic Oscillator
Equation of the harmonic oscillator is given by the formula:
mz + kxr =0

Then, F(x,%) = m& + kx. Furthermore, we will assume that the multiplier is only a function

—

of t,z,&. Hence, A = A(t,x,%). Euler-Lagrange operator applied on arbitrary function z(t) is

represented as follows:
ONF  d [ONF d*> [(ONF
)= — — — [ —— ==
SOF) =5, dt<8$>+dt2(c‘%)

Evaluating {(AF):

F
% = \;(m& + kx) + Ak
F
d* (ONF . . . . \2 . 2
w\ )= M (At + AT+ Mg T+ AT+ Mo T+ A ()7 + N ZE+ Nt &4 Agp BT+ Ao (2) 7+ A @)

If the product AF is a total derivative with respect to 't’ then, {(AF) = 0. Assuming A has the
form A = a(t) 4+ b(t)x + c(t)Z the equality below is obtained.

2mb(i) —kc() +kxb—kax(¢)+ka+kbr+ke(z)+m(d)+ma(b) +m(E)(2) +2mb(Z)+m(¢)(Z) = 0.

One way to satisfy this equation is to equate the coefficients of z, &, % to 0. Consequently, we
get the equations:

—2b=¢
4bk +mb =0
ka+ma =20

Solving these ordinary differential equations yield the solutions:

k
a(t) = ay cos(wit) + agsin(wt), w; =4/ —
m
: k
b(t) = by cos(wat) + bosin(wst), we =24/ —
m
2b 2b
c(t) = =2 cos(wat) — — sin(wst) + c3
Wa Wao

To find one of the conserved quantities we will assume a1 = by = by = ¢; = o = 0 and,ay =
c3 = 1 hence the multiplier will take the form A = sin(w;t) + &. The product AF will be:

mi sin(wit) + mid + kx sin(wit) 4+ kxd

This algebraic expression should be the time derivative of a conserved quantity ¢(t). To verify
this we will integrate this expression with respect to time.

/)\th: /m:isin(wlt) dt+/mfé$' dt—l—/k:a:x' dt+/k::vsin(w1t) dt (2.1)

5



2.3. EXAMPLE: KEPLER’S PROBLEM

Integrating by parts the last term of twice gives,

k
/kx sin(wst) dt = = cos(wyt) + — sm (wqt) — /mx sin(wst) dt.
wq

Hence we have,

d d (mi? ka® kx kx
/)\F dt = a(qﬁ(t T, %)) = 7 (T + o T cos(wqt) + w? sin(wst) + d)

2.3 Example: Kepler’s Problem

The equations governing the 2-Body problem in normalized form are,

41 i = a2
T o 9N\3/90 2 — T 7 9  oNa/o-
(¢} + ¢3)>? (a8 + ¢3)*?

These second order equations will be converted to first order equations,

G =

u = W’ G1 —u =0,

v o= (q%+q§)3/27 q2 — U= 0,

¢q1 and g9 are components of the vector describing the position of second body relative to
first body. These equations will be placed in vector F. Similarly to Harmonic Oscillator case,
applying Euler-Lagrange operator to X- F will result in £ (X F ) =0 for X which is a conservation
law multiplier. In particular we assume the form of X, 0if X- F is a total derivative.

(g1, q2,u, v, G, G2, 10, 0)
2(q15 @2, U, v, G, G2, U, D)
( )
( )

>~

Y

A(Ql&%%“»dhd%%@ = )\3 Q1 G, U, 0 q-l q.2 0D

)\4 qdi1,42,U, v, 417 427 ?'L, v
and write
U+ (a2 +q 3)3/2
=3 A —Uu
F(ql,QQ,U,’U,ql,C]g,U,U> - ’U—l—(h
(a2 +q 3)3/2
Go — v
This leads to,

q1
(¢ + 43)%

q2

(¢ + q§)3/2)

1

X F=X(u+ ) + Aa(qi — u) + As(0 + + (g2 — ).

19 (X . F ) = 0 by letting coefficients next to highest derivatives of ¢1, g2, u, v should be 0. This

condition leads to 10 distinct equations, where xo(q1, ¢2) = (q?Jrqu’ x1(q1,q2) = W’ Xo =
1 2

9xo ox1 Ixo _ Oxa
g1 7X1 B 7X0 Xl Bg2 — Oqi°

N . PNy . PN . PN . Oy O\
——— (1 +x0) + === (g1 —u) + =——=— (0 + x1) + — 4+ =] =0,
laqlé’qz (@4 xo0) 0¢10¢> (G =) 0¢10G> (+x1) 0¢10 2( 2= V) Jd¢a  Oqy
0’ PNy, ?\s . O’ . O\, OM\g
_ _ e DT
[5 T 7 A A7



2.3. EXAMPLE: KEPLER’S PROBLEM

2 5?2 82\ 2 V)

1 2 3 1 1 4|
[aum(“m”aa?(‘h ) F gaag U ) T gaaa 2 0 F ga %]_0’
92\, 82\, W 2\, DNy ON|

92\, 82\, W 52 Mg O
ReAC R cdl R
[aq-12 ('LL _'_ XO) + aq-12 <QI 'LL) + 8q-12 (U + Xl) + 8 12 (q2 ) aql aql )
82\, 2, 2\, 2N, 0% O
- 24 20—, (22
2N, 2Ny A5 . 2N, My O\
_ _ 2L 78
[8(1'13 (4 x0) + 5255 (6 —w) + 5550+ x) + 5250 (e —v) + =+ 527 =0,
[92), 82\, W 92\ O\, O\ |
S (i x0) + 5oy (G —w) + S (0 ) + 5ol —v) + s+ | =0,
92\ 82, W 92\, Oy ONg)
agl(u+X0> 82<Q1 ) 62(U+X1) 62(2_ ) 8U3+8_; :07
2N, 2Ny 52\ 2N, oA ONg|
lﬁua@(“mHm(% W)+ 5aas 0+ X) + o = v) + G+ 5o =0,

In general equations [2.2] is difficult to solve. Hence we assume to find a particular soluton of
2| by assuming a hnear form in /\

q1

q2

a1 @12 13 di4 A15 G A17 418 U

X: Q21 G22 (23 A4 Q25 G2 A27 A28 U
az1 (32 a3z AaAz4 A35 G36 Az7 A38 q1

ag1 Q42 Q43 Q44 Aq5 A4 Q47 Q48 G2

U

v

Assuming ) is a linear vector function, the Euler-Lagrange operator will yield four equations,

way + A\ixg 4 a11xo + @211 — anu + az0 + azix1 + Asxy + aa1Ga — agv—
ars(i + Xog1 + X5G2) — aas(di — @) — (ag1G1 + azega + a3t + a® + agsdi+
ag6G> + Aaril + axs®) — ass (U + x3G1 + x1G2) — aas(go — ) =0

Uars + A\ixg + a12x0 + a22q1 — AU + Az + azaX1 + A3Xi + Gaaga — Asv—
ar6(i + X0G1 + XoG2) — az6(Gi — 1) — (a41G1 + aaGo + 43Tt + Q4a® + assG)+
a6z + asrii + asg®) — ase(V + x3G1 + x1G2) — aa6(da — ) =0



24. EXAMPLE: POINT VORTEX PROBLEM

Uaiz — A2 + ai13Xo + @23G1 — Q23U + a330 + aszX1 + A43Gs — Au3V—
a7 (i + X0g1 + X5a2) — asr(di — @) — (a11Gi + a12Ga + a13t + a1 + aysqi+
a16G> + ar7il + a1gt) — az7(v 4+ xVg1 + X1¢2) — aar(¢o —0) =0

Uaiy — Ay + A1aXo + A24G1 — Q24U + A340 + Az4 X1 + AaaGo — AgaV—
ars (i + xQG1 + X§G2) — azs(di — @) — (asigy + as2qs + assti + azq0 + assGi+
asea + as7il + ass¥) — ass(v + xVG1 + X1G2) — aus(go — ©) =0
If the coefficients of qi, g2, u, v, q1, go, 4 and ¥ in the equations are 0 then equations are satis-
fied. This results in all a;; being 0 except ais, asz, azs and asg, where a5 = —ag; = aze = —dus.
Hence the multiplier takes the form, where K is a constant,

It now can be verified that:

N .. q1 q2 ./
AN F =G0+ -———=5)— (g —u) + @0+ ——5=5) — 0(go — v) = Dy(P),
(¢ +q3)%? (63 +q3)*? :
where
w?  0? 1
=ty T T
qi + 45

2.4 Example: Point Vortex Problem

Interaction of two point vortices on a plane is ruled by system of four non-linear equations such
that,

iy 4 L T2 (y1—y2)

27 (T‘%J )
. 1 Fo(z1—x2
= Y=o,
F= 12 =0
. 1 Ti(y2—y1) )
Tat e,
- lrl(.TQ;xl)
Y2 27 T%Q

In the equation, (z1,y;) and (x9,ys) are instantaneous positions of first and second vortices

respectively. Moreover, ry o = \/ (1 — 22)% + (y1 — y2)? is the distance between two vortices .
Assuming A\ = A\(z1, y1, T2, Yo, £1, Y1, To, y2) and executing \ - F leads to,

1T - 1 To(z —2
A F =M oy + )\1—M + Aot — Az—w + Ago+
2 19 2 19
1Ty (y2 —w1) . 1Ty (23 — )
Ag——— L L Ay — Ay—————>. (2.3
35— T%Q + A4Y2 45 7“%,2 (2.3)

For simplicity certain substitutions will be done. Such as ,

O 7)) _l@m—w) v O 5 O 5 O 4 Op
P1 2’7T T%Q ) P2 27T T%Q ) pl axl 9 pl ayl ) pl 8372 ) pl ay2 )
Ip2 2 _ Op2 5 _ Ops 4 _ 9p2

1 pr— pu— p—
P = oz, P2 ET P2 Oz P2 e



24. EXAMPLE: POINT VORTEX PROBLEM

Nature of the functions p; and p, induces,

pL=—pi = —ps = Py, pi = —pi = py = —pj.
Similar to previous examples applying Euler-Lagrange Operator to X-F yields four equations
such that,
o(XF) 4 [o(XF
o1 dt 01
o(XF) 4 [o(%F)
s o oy dt \ o
$ (A F ) | o(xF) 4 [o(3F) =0,
0o @t 0T
o(XF) 4 [o(AF
dy2  dt 092
where,
0 (X F ) oM O\ . O DXy O )
— L D pi N A+ Do py e —Doptha—Topr =+ = —T pAs—T >
9, 51718 1+ 2P A1+ 202a 1+y18 ) 2012 2018 1+IB28 o 1P2A3 1028 1+
A4 Oy
Tipia, +T
y2@1+ 1P1A4 + 2P1al
9 (X F ) O O\ O DXy . O\ )
— /- Top2A+T ! —Dop?Xo—Topi =2 420 =—2—T1 piA3—T1 po =
o 8y ——+Lops A1+ 2P2(3 1+y18 " 201 A2— 2,018 1+$28 m 1P2A3— 1p20y +
Oy O\
Yo i + T1piAs + Dapy 83;
9 (X F ) O\ O\ OA OXy . O\ )
3—x2 = xla——Fszg)\ﬁ*Fzma 2+y1@ z F2P?>\2—F2018—2+$28—2—Flpz)\3 P1P2a—3+
. a 4 3>\4
Lipihy +T
9282-1- 1P14+ 2/7182
0 (X F ) O\ O\ O OXy . O )
— 7 — Topihi+Tops— 2 Dopiho—Topr =t ag——o—T1pirs—T >
o, T s +LapgA1+12p2 B +y1— 9 2p1A2—1 201 B +To~— 9 1P2A3— 1[92a 2+
Oy Oy
Tipia, +T
yzay +LipiAd + 2[)16)2
8<A'F> a/\l(x +Tapa) + — (91 — ) )‘3( Lip2) + =— (G2 +Tip1) + A
din s 1 202 ) Y1 201 i 1P2 Y2 101 15
0 (X F ) O\ O\ O\
0ty 8:&; (@1 4+ Tap2) P (th — Tap1) 8_:(:2 (t2 —Tip2) + a_jc;l (g2 +T1p1) + As,



24. EXAMPLE: POINT VORTEX PROBLEM

1/. a)\z . 8)\3 . 6)\4 .
- r 922 (g — Topr) 222 (4 — T - r A\
0, i (&1 + Lapa) + i (1h 201) i (&2 1p2) + i (72 + T1p1) + Ao,
0 (X - F ) ) ) O\ O\
1 . 2 . 3 . 4 .
- = (11 +T + - T —— (L2 =T + - (g + T + A4
D1 i ( 1 2P2) E (yl 201) D1 ( 2 1p2) D1 (y2 101) 4

Like the case of gravitational 2-body problem, in order to satisfy the four equations one can
equate the terms next to highest order derivatives(#7, 4, o, y2) to zero. This yields fourteen
equations in which ten of them are distinct.Such that,

9*\y 0%\ 0% N3 W oA 0N

— (2 T ——(y; =T —— (9 — T — (9 T —_—+ — =

032 (1 +Tapa) + B2 (1h 201) B2 (2 1P2) + B2 (g2 +Tip1) + 92, + 92, 0,
oM (#1 + Dapo)+ cie: (91 — Tap1) g (9 — Dipo)+ 5 (g2 +T )+%+%—0
010 1 202 95,05 n 201 01 Oirg 2 102 910 Y2 101 Dby | Oy )
8%(:}3 +T )+—62A2(' -T )—62>\3(j: -T )+—82A4(' I+ 2a 0%,
6x'% 1 202 83&% U1 201 8:1’0% 2 102 8:1’0% Y2 1P1 O ity =y,
—8%(:‘5 +T )+—82A2(‘ -T )—62)\3(:1’0 -T )+—82A4(' I+ 2224 0%
33)% 1 202 ay% U1 201 ay% 2 102 ay% Y2 1P1 83)1 ay.l =Y,
82)\1(:1'6 +T )+82A2(‘ -T )82)‘3(9'; -T )+a2>\4(, +T )+%+%—0
8y’§ 1 202 83’/% Y1 201 83)% 2 102 83}% Y2 1P1 I D1 =V,
oM (1 + Dapo)+ atas (91 — Tapr) s (#9 — Dipo)+ cater (2 +T )+%+%—0
0101 1 202 Din 0 Y1 201 Din 0 2 102 89,05 Yo 1P1 B | O )
oM (#1 + Dapo)+ e (91 — Tap1) g (@1 — Dipo)+ iy (. +T )+%+%—0
011014 ! 22 011024 h 2P 01101 ! 12 011091 b2 1P diy Oy
PN . PNy . ?Ns . PNy . 0Ny 0Nz

(@1 4 Tap2)+ (1 — Tap1) (1 — Typ2)+ (o +Tip1)+5—+5— =0
D00ty 1 202 89,04 Y1 201 Er 1 102 e Y2 1P1 Diy | O )
T (#1 4 Tapo)+ calec (92 — Tap1) g (@1 — Tipo)+ aar (o + Topn)+ 223 O g
BBy 22 09202 V2 2P digdy 12 01207 Y2 1 Oyy Oy
PN . PNy . [0 YR PNy . o\ O\
(214 Tapg)+ (g2 — Tapr) (21— Tipo)+ (2 +Tip1)+ -+ =0

D10y 1 202 D020 Y2 201 D10 1 1P2 R Y2 101 Ot Oy .

10



24. EXAMPLE: POINT VORTEX PROBLEM

These equations form a system of partial differential equations.One of the solutions for this
system is a linear function of A and its variables. Thus for simplicity we will seek a linear
multiplier A such that,

X1
n
X2
Yo
Ty
(7
To
Yo

ail G2 13 A4 Qi3 G Q17 A1g 419
Q21 G22 (23 A4 Q25 (26 G27 A28 (A29
as1 (g2 G33 A34 A3zs A3 Az7r A3g G39
A41 Q42 Q43 Q44 Q45 G4 Q47 A48 Q49

>
Il

Consequently, four equations resulting from Euler-Lagrange operator are,

an @142 paa11+Tapp M +as1 i —Toprass —Lopi Aotasiia—T1praz —T1ppAs+aa e+ 1 p1an+T1p M
—(an®1+arar + a3 +aiao+aisii+aigi +arriataisis) —ais (i1 + o (pyin +p35h +p5da+pate))
— ass (i1 — Da(prdn + pitn + pids + prye)) — ass(Za — Ti(padn + p3n + padia + pag)) — aas(fot
Ly (prd + pitn + pida + piys)) = 0,

1281+ D2 p2a124+Tops A1 +asoi1 —Toprass—TapiAo+azsio—T1 praza—T1p3As+aste+T1pras+1piAs
— (a9181 +a2081 +A2382+a24Ya+ o531 +a26§1 +aarEa+assin) —a16(E1+Ta(pydn +p35n+p5Ea+p302))
— ass(§i1 — Ta(pidn + pitn + pids + piga)) — ase(Za — Tr(padn + p3n + padia + padia)) — aag(Jo+
Ty (p1#1 + pTor + pida + piia)) = 0,

a1381+ D2 p2a134+Tapi A1 +as391 —oprags—TapiAo+assio—T1 paass—T1 piAs+assye+T1pras+1pi A
— (az1d1+azoyn +as3do+azalo+ass it +aseii +asriatassis) —arr (14T (padn+p3in+p5Ea+p302))
— agr(ih — Ta(prin + pign + pida + pii)) — asy(@2 — T1(padn + p3gh + padia + p3y)) — aar(fo
+Ti(pra + pign + pias + piin)) =0,

a1481+ o paara+Topshi+azats —Taprass—TopiAataziioa—T1p2asa—T1psAs+aaato+T1pras+T1pi A
— (g1 81 +aa20 +Aa3To+AaaTo 05T Fassii +asriotasgiia) —ars(E1+ Do (pydy+ P50 +paiat+pais))
— ags(§1 — Dapids + plin + pida + piue)) — ass(iz — Di(pydn + p3in + poia + page)) — aas(ia
Ti(pidy + piin + piia + pie)) = 0,
By solving the four equations above for variables a;;¢ = 1,2... j = 1,2... one can obtain a

non-unique conservation law multiplier.Although there is more than one solution, one of the
solutions is given by,

11



24. EXAMPLE: POINT VORTEX PROBLEM

2F1[E1 + Flyl + Fl
Mxy — oy + 14
20021 + Tage + 1y
2F2x1 - Fg.fil'g + FQ

>
I

A can be decomposed in to four different vectors each of which act as a conservation law
multiplier as well such that,

22 + Ty + 1 2N x4 I I' 0
v 2y — Iy + 1 2l =Tz 0 I
A = . — .
2l9x9 + Loy + Ty 22, + Layo * Iy o |
2F2y2 — ngfg + FQ 2F2y2 —FQ,i’Q 0 FQ
2P1(L’1 F1?J1 Fl 0
- 2N - Iz - 0 - I'
AL= AT Ap = Loy Ax = Iy Ay = 0
2F2y2 —F2$2 0 FQ

Each multiplier has a conserved quantity associated with it. To gather the conserved quantity
® the product A - F' will be evaluated . This results in,

— —

d

— — d
Ax - F =&, = E(lel + o),

Lo d
AY'F=¢L:£(F191+F2?J2),

- o d (1
Ap-F=0p=_ (Erlrﬂn IV (21 — 2)? + (11 — 92)20 :

It is worthwhile to mention that the conserved quantities®,, ®,, ®; and ® are x-component of
momentum, y-component of momentum, angular momentum, and Hamiltonian(Kinetic En-
ergy) respectively. It was mentioned before that one conserved quantity may have more
than one multipliers associated with it.There exists another multiplierXH which yields the
Hamiltonian(H). In order to obtain Ay one must write the system(F = 0) in Hamiltonian
formalism such that,

g 1
Fo| oy
272 + F) o
_ ot
Y2 Oxo
Choosing Xy such that,
OH
i
on
it
Y2



24. EXAMPLE: POINT VORTEX PROBLEM

Hence evaluating X H- F produces,

ia_H_i_a_Ha_H_F'a_H_a_Ha_H+i-a_H_a_Ha_H+'a_H+a_Ha_H_i >_
Y90, " By 071 Oy, 00y | 0z,  Oys0ms | Oyp | 0w Oys  dt
d (1

a0 (Eflfz In |\/($1 —29)% 4 (y1 — ?/2)2|) .

It is known in the literature that there are four independent constants of motion for point
vortex problem.We found the corresponding multipliers for two point vortices and generalized
to N-vortices.

Conservation of Linear Momentum in X- axis:

Conservation of Linear Momentum in Y- axis:

13



24. EXAMPLE: POINT VORTEX PROBLEM

Conservation of Angular Momentum:

2P1X1
2 Y,
2y X,
2IhY,
A5 X3
23V A F=—(O TiX7+Y7))

>
h
I

2N XN
2I'NYN

Conservation of Energy (Hamiltonian):

F1 ZZ o I xi »
;ﬂ_rg ZZ#%F $i 331

2,1

%I& Zz?él F yi i

2,1

1 :):3 z;
Qwrzszz 1F :

— 7‘31 -

Ay — A ;0 In(r;
H %FISZZ;&IF Ys Vi 47Tdt Z J IlT’]

32 1]7

FNZ 11—‘-73N Zq

Nz

FNZZ 1 F yN Yi

Nz

Multipliers can be collected in to one matrix A as row vectors and conservation laws can be
collected in to one column vector ® such that ,

T, 0 T 0
0 T, 0 Ty
A= o, X, o, Y; O v X N Yy
afl x; Uik} zN z 1 N YN —Yi
L, T L, YN, T s Lry zl ) Tt STy Zi’;& I
N
Ziﬁl I X
(I)’ _ Zi:l 1Y

va1 Li(X? +Y7)
;g In(r; ;)

1
A 7,7=1

14



Chapter 3
Multiplier Method

In this section, the multiplier and the conserved quantity will be discretized in order to obtain
a conservative method for the point vortex problem in the case of N = 2, N = 3 vortices.

3.1 Multiplier method for ODEs

We review the multiplier method for ODEs appeared in [3]. It was mentioned before that

AF = Dy(9),

where A is the matrix that combines the multipliers as row vectors, F is the vector that
represents the equation, and D;(¢) is the total derivative of the conserved quantity ¢ with
respect to time. If A is a square matrix, isolating F’ will result in,

F=A"'D,(¢).

However, if the multiplier matrix is rectangular, which is usually the case, one must partition
F and A into two matrices as follows,

(A2)( §) -0

Isolating F leads to,

F=AYDy(¢) — 2G). (3.1)
Discretization will be symbolized with the superscript 7. Hence the discretized version of
becomes,
F™ = (A")"Y(Dy(¢)” — X7G7).

Thus the discretization of F' will depend on the discrete determinant of A7. This determinant
shall not vanish at the mesh points in order for numerical solution to be robust. One can find
many discretizations for F' by choosing various discretizations for D;(¢), 2, G and A~'. By a

smart choice of discretization for Dy and G” the discrete determinant AT can get factored out.

For N = 2, Conserving Linear Momentum in z,y gives,
~ 1 10 = I'y 0
™n—1 _ T 2
(47 _rl(o 1)’ - (0 Fg)’

15



3.1. MULTIPLIER METHOD FOR ODES

Fl m1+1711 + F2 <z§+1,z§>
T T
Dt(¢) = Y+l _yk gkt _yk )
() e (2
astt—ak 4 Iy (yf—yh)
G = ot 2m (o3 =212 —ui)® |
Ya Yo + 1 Iy (27 —z3)
T 2m (zf—ah)2 4+ (5 —ut)?
Rl _gh L1 Ta(yk—yb)
Fro| o, el
Yo —Y1r 1 F2(931_5'32)
T 27 (af—2F)2+(y5 —y1k)?

For this case the determinant of A™ was a constant hence did not vanish. Forward Euler-method
has been chosen as discretization scheme.

N = 2, Conserving Angular Momentum gives,

A= (Digetng ), = (D™ +h) T +08) Do +8) ),
k+1y2_ (o k+1 LEH2 (g ykt!
Dt(¢)T — ( Fl ((Il )27 ( ]f)2> —|—F1 (( )j (1)? > —|—F2 (( 2 )i ( 15)2> —|—F2 (( )i (yk)2> )7
i A SR Y i e v )
= - E(xk+1 k+1)2 +(y 12c+1 k+1)2
G — a:’2“+17xk 1 I'1(yy k+1 k+1+y1 yg)
- T A ( k+1_ k+1)2+( k+1_ k+1)2 9
yéﬁ_l_ylzc 1 Fl( k+1 k+1+$1_332)
p + i A (2EFT = k+1)2+( E+1 yf“)
~ shl gk Ty (yh ! gkt
S 5

This discretization of G™ has been chosen on purpose in order to factor out the determinant
A7. If had used backward-Euler scheme for G we would have obtained,

A —(%) ST = (Th(yh) Toah) Ta(yh) ),

vt —<yk>2> +P2((x’;+1>2—<x§)2> +F2((y§“>2—<y§)2) )

2 k)2
T
i T VY o
271— (l’k+1 k+1)2+( k+1_ylf+1)2
k+1 k
k+1

Dy(¢)" = < Iy

f:vQ 1 Fl(y’“+1 ysth)

271— ( k—+1 kJrl)Q (yk+l_yllv+1)2 9

y'z““—yz Fl(w’f“—w?é“)
+
27‘(‘ ( k+1_ k+1)2+(y§+1

k1
—y1+ )2

FT _ k+1—x’f + L F2(ylf+1 yk+1) ) (3 3)
o T R T ) |

It can be seen from |3 || 3] that F™ vanishes if the value of ¥ is zero at one of the mesh points.

N = 2, Conserving Linear Momentum in x,y and Angular Momentum gives,

Rl 1 [T (5 57+ x3) I};J}}(ylfﬂ + Zlg)l . —I'1T
(T2, (a5t + ok — —z7) CT2(zh 4 b B T Y

16



3.1. MULTIPLIER METHOD FOR ODES

k+1 k k+1 k

x —x T —x

Fl 1 = 1 + F2 2 = 2

k+1 k k+1 k

T __ Y Y Yo Yo
Dt(¢) - Fl +F T )

T ar (x2_$1) +(?12 Z‘/ ) !

Arsk |1 )
~ k+;— k i ($ k:-$1) Ij—-l-(yQ _I:Ic/f)i:
FT — Y —Yy1 1 F2(1‘ —Ty FTy —1‘2)
k+71— . ar (le;aiﬂ ;;Eyz —Y7 k)2
zp—wy 1 Ty +yf—y5)
O 4m (5'72_931)2 (y2 91)2

For N = 3, Conserving Linear Momentum in z,y gives,

~ 1 10 = r's 0 I's 0
-1 _ — T 2 3
(A7) _n(o 1)’ > (o r, 0 rg)’

k+1 k k+1 k k+1 k
x —x x —x x —T
I 1 1 1 I 9 2 2 I 3 3 3

Dy(¢)" = T, (y’f+1—y’f> 4T, <y§+1—y§) 4T <y§+1—y§> ’

T

N A Ty (yk—yh) Fs(y2 —y5)
X T + 277 (33 _551)24'(?/2 )2 T 27" (55 -z ) +(y3 y2)2
ys T =gk 1 Ty (a5 —ak) 1 T3 (ah—ak)
G™ = X I Iz (5 —aF)2+(y5 —yp)? Iz (z§—x5)? +(y3 —y5)?
ak gk L1 Ty (yk—yh) L1 Fz(y3 —y5) ’
T 27T (x5 —xh)2+(yk—yh)? 2” (x5 —x5)2+(y5—y5)?
y§+l_y3 1 Fl(xg_l’lf) 1 F2(953 IIQC)
o T oor (xf—xk)2+(yh—yl)? T 2m (xk—xk)2+(yh—yk)?
k41 ok
Ty Ty 1 F2(yl yz) F3(y1 —Y3 )
P O T A e L T = e
i S Pa(ah—ah) 1 Iy (o} —2
T R (25 —a)2+(y5 —y1k)? T oor (zh—ah)2+(yk—ut)?
N = 3, Conserving Angular Momentum gives,
(A1)~ ( T iy > ST = (T 4 ub) o™ +af) oo Ty +4) ),

ktlya yEH1Y2_(yk)2 k+1y2_ (kY2 k4142 () ky2
Di(¢) = ( T, <%> 4T (%) 4T <%> T ((y )T (v5) ) > 7

17



3.1. MULTIPLIER METHOD FOR ODES

yr H —yk 1 Do(ait!—abtl4ab—ak) 1 Dy(@it! =l 4ab—ak)
A R A e LT

o5t —ak _i_LFl(y';“—y'f“-Fyg )+ 1 Ds(uh ™ —ybt b —yb)

e 4m (wkﬁ ) +(y2 —yt )k dm (af 53 k)2 +J£714 yg) .

G = Yo ' —Ys _Llﬁ(:cQ - +ac2kx1) 1 Ds(zy —ayg +ak—zk) 7

T G P gt ),

i Az R S Dy =i b —yb) 4+ L Ia(y3 *yz +u5—y5)
T ar (af—af )2+(y y) dm (af—aB)2+ (b yg)

y§+lfy§ 1 I‘1(x§+1 + +:1:3 z]f) 1 Fg(a: 1 k+ +x3 :1:’2“)

T ar (I3_$1)2+(yg y1)2 an (I§—$§)2+(y§—y§)2

P ATeeh 1 DaET b e —ah) |1 TeGh T gt —ah)
- T + 47 k + = i kY2
(35— :rl) +(yz yl) (:r3 11) +(y3 —y7)

N = 3, Conserving Linear Momentum in x,y and Angular Momentum gives,

o 1 DTy 4 2f) 1;+1;2(y'f+1 +1£)1 ) ~I'i T,
F2F k+1 k+1 .k
(M) 4 =t =) | —rg(ad o+ af) IR ) 12
) 0 T 0
S T, 0 Ty ,

Do(ys™ +yh) Ta(ah™ +2%) Ta(ys™ + o)

(4228 1 (S25) oy (428

Dy(¢)" = I, ( -yl) ( il *“)+r (—k“-yff) ,
ry (et |y, (W) () D (0h )

St ST (L LEe S G e S oY oY)
k+71— . 4w (12*951)2 ( )2 4“ (%};ﬁa) +(92 yk)Q
G = 3 —:c3 + L 1 Da(ys =yt +y3 ur) 4+ L (y3 yh—ub) 7
. 47T (wkflcl) I;i(y —n )k 47T (a5 2.%3) ) Jﬁ/g —y5)? X
ys ' —yh 1 Ti(af "tab—at) 1 Dy(} +ak—ak)
T 4m (13*901)2 (v5—yr)? ar (zf—af§)? +(yg —y5)?
ot gk 4+ L F2(yk+1—y§+1+f1—xz) + L Ls(yy ™ —ys ' ab—ah)
. O il L ;f1> Ce
F™ = Y1 —yr 1 F2(11k+1_ +z k_+I12) 1 Iz(x] +11_13)
k+T1 k i (xéiiﬂ1 s kJ$1§ u ) i (mk;:cl)k—ﬁ% ~u)?
To —r3 4 1 Ti(y; " —yr ' +y5—yt) | 1 Ts(ys )
T 4m (w2 z1)2+(y2 yl) 4n (w2 13)2+(y2 yg)
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Chapter 4

Numerical Results

In this last section, we will present error plots of the conserved quantities for the conservative
discretization from the previous section. We will compare the multiplier method with standard
methods, particularly Runge-Kutta Methods.

4.1 Multiplier method

5 «10°'® N=3,Errorin for iplier Method(+") N «10°1®  N=3, Error in Momentum-y for Multiplier Method(+"™)

Error ¢

5 6 7 8 9 10
number of time steps %104

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4

number of time steps «10%

() (b)

Figure 4.1: N = 3, error in linear momentum in x,y using 7™

N=3, Error in Angular M t
» Error n Angufar Momentum N=3, Error in Hamiltonian for Multiplier Method(+™)
for Multiplier Method(r™) 7
400
350 &
300 5
250
v v 4
= =]
S 200 5
w 3
150
2
100
50 !
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
number of time steps %104 number of time steps %104

(a) (b)

Figure 4.2: N = 3, error in angular momentum and Hamiltonian using 7
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4.1. MULTIPLIER METHOD

The error € is defined in this context as,
[®(5%) — @ () + n * di),

where g is the vector of initial values given in the Table [1.1 The figures are constructed by
generating e for each n. It can be seen from |4.1a] and [4.1b] that the error in x and y component
of the momentum is generated by machine round off. This verifies that the momenta-conserving
discretization 7, conserves momentum in x and y. However and show that angular
momentum and the Hamiltonian are not conserved under this discretization. This is reasonable
since T, was designed to only conserve momentum x and y.

Number of time steps | step size ‘ initial value ‘ Circulation strengths

100000 0.5 xy =1y, =2 =1
To=0,1p0=—1 | Ty =2
1’3:2,$3:—1 F3:3

Table 4.1: Parameters

N=3, Error in N=3, Error in
12 %1010 for Multipli hmy 14 %1070 Momentum-y for Multiplier Method("™)

H
0.8 |

Error «
o
o
Error e

0.6

0.4 H

0.2 : i' 0.2

0 0
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10

number of time steps «10% number of time steps x104
(a) (b)

Figure 4.3: N = 3, error linear momentum in x,y using 7™

Figures [4.3a] , [4.3b] and [4.4a] show that momentum x,y and angular momentum are all con-
served under the angular momentum and momenta-conserving discretization 75™.Comparing
figures, and and figures [4.1a] and [4.1b] shows that the difference in the order
of magnitude is a factor of three for 7,, and 7,, . This is because the 7b™ is an implicit
discretization. Figure shows that 7, does not conserve the Hamiltonian.
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4.2. COMPARISON WITH RUNGE-KUTTA

N=3, Error in Angular . . . I,m,
o m N=3, Error in for 1]
18 %1010 for Multiplier Method{r"™) 4
35
3
25
5 22
5 o]
1.5
1
0.5
]
0 1 2 3 4 5 6 7 8 9 10
number of time steps %104 number of time steps %104

(a) (b)

Figure 4.4: N = 3, error in angular momentum and Hamiltonian using 74™

4.2 Comparison with Runge-Kutta

; %1074 N=3, Errorin Momentum-x for RK-2 o <1071 N=3, Error in Momentum-y for RK-2

Error ¢
Error ¢

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
number of time steps «10% number of ime steps %104

(a) (b)

Figure 4.5: N = 3, error in linear momentum in x,y using RK-2

& N=3, Error in Angular Momentum for RK-2 08 N=3, Error in Hamiltonian for RK-2

0.7

0.6

0.5

0.4

Error ¢
w
Errore

0.3

0.2

01

o o
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

number of time steps %104 number of time steps %104
(a) (b)
Figure 4.6: N = 3, error in angular momentum and Hamiltonian using RK-2
From [4.5a] and [4.5b] , it can be observed that RK-2 conserves the linear momenta, since the

figures imply that the source of the error is mostly round off. On the contrary, RK-2 does not
conserve the angular momentum and the Hamiltonian .
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4.2. COMPARISON WITH RUNGE-KUTTA

<1074 N=3, Error in Momentum-x for RK-4 <1074 N=3, Error in Momentum-y for RK-4
i
35 i
i
s B
=i i
25 #FE1 B
. Ina.
5. Fhiil i
& P OEIiE H k il =5
L 1 EIR i F I
SR 11 TR E | B (8
FOGIIBE &, . 0 FE.E OE LIM
14 M 8 FU L fIEEL Bailil
F E WiAd B4 E GFIE | R LIE
osllf  E  PUES'HIESEE.T E B AIES E5E
g I IEm === FE EEI EF
DD 1 2 3 4 5 6 7 8 9 10
number of time steps <104 number of time steps %104
(a) (b)
Figure 4.7: N = 3, error linear momentum in x,y using RK-4
3 %1073 N=3, Error in Angular for RK-4 5 *107% N=3, Error in } i ian for RK-4
7
25
[
2
5
Q 1.5 § 4
i} i}
3
1
2
0.5
1
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
number of time steps <104 number of time steps <104
(a) (b)

Figure 4.8: N = 3, error in angular momentum and Hamiltonian using RK-4

Similar to RK-2, RK-4 also conserves linear momenta without conserving angular momentum
and Hamiltonian.

Numerical solution (+"™)

Numerical solution (RK-4) N

(a) (b)
Figure 4.9: N = 3, Path of vortices using RK-4 and 75™

The plots above were generated using parameters from Table . From figures and
it can be seen that two figures are not exactly the same. RK-4 provides a more accurate solution
then 75™ because it is an higher order method. However, higher order method does not mean
more accurate solution in long time. Moreover, RK-4 is not able to preserve energy and angular
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4.2. COMPARISON WITH RUNGE-KUTTA

momentum in the discrete level.

Number of time steps ‘ step size ‘ initial value ‘ Circulation strengths

100000 0.005 =1,y =2 =1
Igzo,ygz—l F2:2
£E3:2,ZE3:—]_ F3:3

Table 4.2: Parameters
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Chapter 5

Conclusion

In this paper, conservation law multipliers and their corresponding conservation laws were
derived for the 2-vortex problem and the N-vortex problem. Four conservation law multipli-
ers were found for linear momenta, angular momentum and energy. The multipliers and the
conserved quantities were discretized in order to obtain a conservative discretization for N=3.
Two types of conservative discretizations were implemented: one which conserves only linear
momenta and the other which conserves linear momenta and angular momentum. They were
verified numerically to be conservative up to machine round-off. Moreover, they were compared
to standard numerical schemes, such as RK-2 and RK-4.

There are three possible directions for future work: generalize the proposed discretization to
N-vortices, find a conservative discretization which conserves all four conservation laws, and
generalize the results to the point vortex problem on the sphere.
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